• 제목/요약/키워드: carbon powder

검색결과 982건 처리시간 0.026초

저탄소강에 대한 Ni기 초합금의 레이저 클래딩 (Laser cladding of Ni-base superalloy on low carbon steel)

  • 이제훈;서무홍;김정오;한유희
    • 한국레이저가공학회지
    • /
    • 제2권2호
    • /
    • pp.34-41
    • /
    • 1999
  • A RS840 $CO_2$laser and a powder auto-feeding apparatus have been used to deposit single tracks of Ni-base superalloy on low carbon steel. In this paper, the effects of laser cladding parameters on clad geometry, dilution and microhardness are studied. As a results, the w/h ratio of the clad layer increases with decreasing powder feed rate and increasing laser scan speed. Increase of powder density and decrease of specific energy have little effect on dilution. It was found that the clad layer of the highest hardness has a structure in which fine and leaf like phases are dispersed in ${\gamma}$Ni matrix.

  • PDF

A Study of Reduced and Carburized Reactions in Dry-milled $WO_3+Co_3O_4+C$ Mixed Powders with Different Carbon Content

  • Im, Hoo-Soon;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.648-649
    • /
    • 2006
  • The dry-milling technique was used for mixing and crushing oxides and graphite powders. The ratio of ball-to-powder was 30:1 and argon gas was filled in jar. The excess carbon was $10{\sim}20wt%$ of the stoichiometric amount. The dry-milling was carried for 20 hours. The mixed powders were reduced and carburized at $900{\sim}980^{\circ}C$ for 3 hours flowing Ar gas in tube furnace. The dry-milled powders showed the wide diffraction patterns of X-ray. The reactions of reduction and carburization were completed in 3 hours at $980^{\circ}C$. After the reactions, the mean size of WC particles was about 200 nm. The content of free carbon in WC/Co mixed powders was less as the reaction temperature increased.

  • PDF

전기 폭팔법에 의한 Sn계 리튬이차전지용 음극 분말의 제조 및 전기 화학적 특성 (Synthesis and Electrochemical Properties of Sn-based Anode Materials for Lithium Ion Battery by Electrical Explosion Method)

  • 홍성현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.504-511
    • /
    • 2011
  • Nano-sized Sn powder was prepared by pulsed wire evaporation method. The Sn powder and carbon black were charged in jar and ball milled. The milling time was varied with 10 min., 1h, 2h, and 4h, respectively. The milled powders were dried and the shape and size were observed by FE-SEM. Nano-sized Sn powders were plastic-deformed and agglomerated by impact force of balls and heat generated during the SPEX milling. The agglomerated Sn powder also consisted of many nano-sized particles. Initial discharge capacities of milled Sn electrode powders with carbon powder were milled for 10 min., 1h, 2h, and 4h were 787, 829, 827, and 816 mAh/g, respectively. After 5 cycle, discharge capacities of Sn electrode powders with carbon powder milled for 10 min., 1h, 2h, and 4h decreased as 271, 331, 351, and 287 mAh/g, respectively. Because Sn electrode powders milled for 2h constist of uniform and fine size, the cyclability of coin cell made of this powders is better than others.

질소와 암모니아 분위기에서 알루미늄(III)의 호박산 및 아디프산 착물의 AlN으로의 변환 (Conversion of Succinate-and Adipate-Coordinated Al(III) Complexes to AlN in $N_2$ and $NH_3$ Atmospheres)

  • 안상경;오창우;정우식
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.455-463
    • /
    • 1996
  • Aluminium nitride (AlN) powder was prepared by using aluminium (III) complexes with dibasic carboxylate ligands(adipato)(hydroxo) aluminium(III) and (hydroxo)(succinato)aluminium (III) as a precursor. The AlN pow-der was obtained by calcining the complexes without mixing any carbon source under a flow of ammonia at 120$0^{\circ}C$ Contary to the conventional carbothermal reduction and nitridiation the process of decarboniza-tion of the residual carbon was not required because of the reaction of ammonia with carbon at temperature >100$0^{\circ}C$. Fine AlN powder was also prepared by calcining a mixture of an (adipato)(hydroxo)aluminium(III) complex and carbon under a flow of nitrogen at 140$0^{\circ}C$ The AlN powders prepared were ultrafine and their morphology was almost the same as that of powders of two precursors.

  • PDF

페로 소재로 만들어진 고크롬계 내마모재의 미세조직과 경도 (Microstructure and Hardness of High Cr Wear Resistance Materials Made by Ferro Materials)

  • 김광수
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.5-10
    • /
    • 2006
  • This study was performed to investigate the characteristics of the synthesized powder type ferro materials for wear resistant hardfacing. The powder type filler materials were made from ferro Cr and ferro Mn. Those ferro materials are two types, such as high carbon and low carbon contained. The alloy composed of high carbon ferro Cr and high carbon ferro Mn exhibited the best properties in terms of microstructure and hardeness for wear characteristics. Further, the alloys produced by the synthesized powders and wire type filler, were also evaluated in terms of microstructures and microhardness measurements. The results indicated that the synthesized powders displayed reasonable properties compared to commercial grade materials. The hardness value of the alloy produced by the synthesized powders were approached about 90% of the commercial grade's hardness. The hardness values of the alloys closely depended on the amount of the dissolution of the ferro Cr, the hardness and the volume of the eutectic phase.

Thermomechanical Properties of Carbon Fibres and Graphite Powder Reinforced Asbestos Free Brake Pad Composite Material

  • Thiyagarajan, P.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.117-120
    • /
    • 2003
  • Asbestos is being replaced throughout the world among friction materials because of its carcinogenic nature. This has raised an important issue of heat dissipation in the non-asbestos brake pad materials being developed for automobiles etc. It has been found that two of the components i.e. carbon fibres as reinforcement and graphite powder as friction modifier, in the brake pad material, can playa vital role in this direction. The study reports the influence of these modifications on the thermal properties like coefficient of thermal expansion (CTE) and thermal conductivity along with the mechanical properties of nonasbestos brake pad composite samples developed in the laboratory.

  • PDF

폐활성탄을 사용한 다공성 콘크리트의 물리.역학적 성질 (Physical and Mechanical Properties of Porous Concrete Using Waste Activated Carbon)

  • 윤준노;성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제51권4호
    • /
    • pp.21-27
    • /
    • 2009
  • This study was performed to evaluate the physical and mechanical properties of porous concrete using waste activated carbon. Material used were ordinary portland cement, recycled coarse aggregate, waste activated carbon and superplasticizer. The replacement ratios of waste activated carbon were 0,1,2,3,4,5,6,7,8,9, and 10 %. The void ratio was decreased and ultrasonic pulse velocity was increased with increasing the waste activated carbon powder, respectively. The compressive strength and flexural strength of porous concrete using waste activated carbon powder were in the range of 8.21${\sim1}$6.58 MPa and 1.69${\sim1}$3.68 MPa, respectively. The pH degree of porous concrete in 1day and 77days were shown in 12.50${\sim1}$12.63 and 10.21${\sim1}$10.70, respectively. Accordingly, waste activated carbon can be used for porous concrete material.

탄소환원질화법에 의한 AlN 제조 규모확대 시험결과 (A Scale-Up Test for Preparation of AlN by Carbon Reduction and Subsequent Nitridation Method)

  • 박형규;김성돈;남철우;김대웅;강문수;신광희
    • 자원리싸이클링
    • /
    • 제25권5호
    • /
    • pp.75-83
    • /
    • 2016
  • 탄소환원질화법을 이용하여 질화알루미늄(Aluminum Nitride: AlN)을 제조하는 연구를 배치당 0.7 ~ 1.5 kg 규모로 규모 확대하여 수행하였다. 고품위 알루미나 분말과 탄소(carbon black)를 배합하여 흑연 도가니에 장입하고, 노내 진공도 $2.0{\times}10^{-1}Torr$에서 온도($1,550{\sim}1,750^{\circ}C$), 시간(0.5 ~ 4 hr), $N_2$유량($10{\sim}40{\ell}/min$)을 변화시키면서 AlN을 합성하였다. 실험결과 합성온도 $1,700{\sim}1,750^{\circ}C$, 합성시간 3시간, 질소유량 $40{\ell}/min$가 적정 조건이었다. 또한, 합성한 AlN에 잔존하는 탄소를 제거하기 위하여 관상로에서 온도 $650-750^{\circ}C$, 1 - 2시간 범위에서 탈탄을 시킨 결과, 알루미나와 탄소 몰배합비 1 : 3.2 로 합성한 시료를 대기 분위기에서 탈탄온도 $750^{\circ}C$, 관상로의 회전속도 1.5 rpm에서 2시간 탈탄하는 것이 적정조건이었다. 시험 제조한 AlN의 성분 분석 결과 C 함량 835 ppm, O 함량 0.77%으로서 순도 99% 이상의 고품위 제품을 제조할 수 있었다.