• 제목/요약/키워드: carbon oxides

검색결과 316건 처리시간 0.023초

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.383-394
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.

장군광산산(將軍鑛山産) 망간광물의 성인(成因)에 관(關)한 연구(硏究) (Origin of Manganese Carbonates in the Janggun Mine, South Korea)

  • 김규한
    • 자원환경지질
    • /
    • 제19권2호
    • /
    • pp.109-122
    • /
    • 1986
  • 장군(將軍) 연(鉛) 아연(亞鉛) 망간 광상(鑛床)은 캠브로-오도뷔스기(紀)의 장군석회암(將軍石灰岩)과 춘양화강암(春陽花岡岩)과의 접촉부에 발달(發達)하는 접촉교대광상(接觸交代鑛床)이다. 광체(鑛體)는 맥상(脈狀) 및 광통형광체로 상부에는 산화(酸化)망간 및 탄산(炭酸)망간석을 주로 하는 망간광물이 우세하고 하부에는 섬아연석(閃亞鉛石)-방연석(方鉛石)-황철석(黃鐵石)-유비철석(탄산망간석)등의 황화광물(黃化鑛物)이 우세하게 발달하고 있다. 그중 망간광상의 성인에 대하여 열수교대(熱水交代)와 동시퇴적기원(同時堆積起源)으로 그 해석을 달리하고 있으며 탄산(炭酸)망간석(rhodochrosite)이 동시 퇴적기원이란 근거에서 장미암(rhodochrostone)으로 명명된 퇴적암(堆積岩)이 제안되었다(김, 1975). 본 연구에서는 탄산망간석의 기원을 규명하고 이들 광물(鑛物)의 침전환경을 추정하기 위하여 모암인 탄산염암류와 탄산망간석, 산화망간, 방해석 등의 탄소안정동위원소(炭素安定同位元素)(${\delta}^{13}C$)와 산소(酸素)동위원소(${\delta}^{18}O$)를 분석하고 이에 수반되는 황화광물(黃化廣)의 황동위원소(黃同位元素)(${\delta}^{34}S$)를 분석검토하였다. 모암인 석회암 및 돌로마이트질석회암은 ${\delta}^{13}C$=-2.6~+0.1‰ (평균 -1.5‰), ${\delta}^{18}O$=+10.9~+21.9‰ (평균 +17.5‰)이고 탄산망간석은 ${\delta}^{13}C$=-4.2~-6.3‰(평균 -5.3‰), ${\delta}^{18}O$=+7.6~+12.9‰(평균 +10.7‰)로 이들 사이에는 현저한 동위원소값의 차이를 나타내고 있다. 이는 광화용액(鑛化溶液)의 탄소(炭素) 및 산소(酸素)가 모암(母岩)인 탄산염암(炭山鹽岩)의 것과는 동일기원(同一起源)이 아님을 가르킨다. 황동위원소(黃同位元素)(${\delta}^{34}S$)의 값도 +2.0~+5‰로 좁은 범위를 나타내며 화성기원(火成起源)의 황(黃)으로 해석된다. 황동위원소지질온도계(黃同位元素地質溫度計)에 의해 추정된 광상생성온도(鑛床生成溫度)는 $288{\sim}343^{\circ}C$이다. 탄산(炭酸)망간석을 침전시킨 광화용액(鑛化溶液)의 ${\delta}^{18}O_{H_2O}$=+6.6~+10.6‰, ${\delta}^{13}C_{CO_2}$=-4.0~-5.1‰로 심부기원(深部起源)(화성기원(火成起源))으로 해석된다. 따라서 탄산(炭酸)망간석은 마그마성 열수기원에서 침전된것이다. 그러나 망간산화물은 모두 지하수면(地下水面) 상부에서 탄산망간석의 산화(酸化)에 의해 2차적(二次的)으로 형성된 표성산화(表成酸化)망간이며 산화망간광물의 산소는 순환수의 산소보다 석회암(石灰岩)의 산소와 동위원소교환(同位元素交換)이 우세하게 일어난 것으로 해석된다.

  • PDF

PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석 (Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs)

  • 임동민;이승식;신현상
    • 대한환경공학회지
    • /
    • 제28권12호
    • /
    • pp.1337-1346
    • /
    • 2006
  • 토양휴민(Hu)은 불용성 휴믹물질 성분으로서 소수성 유기화합물의 비가역적 토양흡착에 중요한 역할을 담당하는 것으로 알려진다. 그러나 휴민분자는 대부분 토양 무기물(점토 및 금속산화물) 성분과의 혼합 상태로 존재하기 때문에 순수분리가 어려워 물질특성과 반응성에 대한 정보는 제한적이다. 본 연구에서는 알칼리 용해성 토양 유기물을 제거한 잔류토양(Crude 휴민)을 대상으로 HF(2%) 처리를 통한 일련의 정제휴민 시료($Hu_1-Hu_6$)를 확보하였고, 원소분석과 $^{13}C$ NMR 분석을 통한 물질특성 및 1-naphthol과의 흡착-탈착 특성을 조사하였다. 비교시료로서 피트에서 추출한 휴민에 대하여도 동일한 실험을 수행하였고, 그 결과는 토양휴민과 비교 분석하였다. $^{13}C$ NMR 분석결과 토양휴민 분자는 탄수화물과 파라핀 계열의 지방족사슬 탄소성분 함량이 전체 유기탄소의 80% 이상을 차지하는 높은 지방족성을 보였다. 1-naphthol과의 흡착실험 결과, HF 정제에 따라 무기물 성분이 제거될수록 Freundlich 흡착상수 n값이 0.538에서 0.697로 일정하게 증가하였으며, 유기탄소-표준화분배계수(log $K_{OC}$) 값도 2.43에서 2.74로 증가하였다. 이는 휴민시료에 존재하는 무기물 성분이 1-naphthol의 흡착에 관여하고 있음을 나타내며, 피트휴민의 결과와 함께 흡착의 비선형성과 흡착세기에 대한 무기물 성분의 영향을 설명하였다. 탈착실험 결과, 모든 휴민시료에서 흡착-탈착 hysteresis가 관찰되었으며, 낮은 용질농도($C_e$=0.1 mg/L)에서의 hysteresis index(HI)는 피트휴민(2.697)>정제휴민(0.738)>Crude 휴민(0.593)의 순으로 나타났다.

입경 및 비중별(比重別) 토양분화과 인산분포(燐酸分布) (Distribution of phosphorus in particle-size separates and specific gravity separates of soils)

  • 홍정국
    • 한국토양비료학회지
    • /
    • 제12권4호
    • /
    • pp.179-187
    • /
    • 1980
  • 토양(土壤)(화산회질(火山灰質) 및 흑이질(黑泥質))을 그 특성(特性)의 하나인 입경별로 분화(分畵)하고 Silt부(部)를 다시 비중별(比重別)로 분화(分畵)하여 전인산(全憐酸), 유기인산(有機憐酸), 무기인산(無機憐酸)의 분포양식(分布樣式)을 밝히고, 인산(憐酸)의 집적(集積)을 좌우(左右)하는 요인(要因)을 해명(解明)하고자 하였다. 그 결과(結果)는 다음과 같다. 1. 전인산(全憐酸), 유기인산(有機憐酸), 무기인산(無機憐酸) 공(共)히 입경 $20{\mu}$에서 급증(急增)하고 입경이 작아질수록 증가(增加)하였다. 2. 입경별 인산(燐酸)의 집적비율(集積比率)(각입경부인산 분포량(分布量)의 입경분화전 원토(原土)의 값에 대한 비율(比率))은 입경 $2{\mu}$ 이하(以下)에서 1 이상(以上), $2{\mu}$ 이상(以上)에서 1 이하(以下)였다. 즉 유기인산(有機憐酸), 무기인산(無機憐酸) 공(共)히 입경 $2{\mu}$ 이하(以下)의 점토부(粘土部)에서 농축(濃縮)이 되어 있었다. 3. 전인산(全憐酸), 유기인산(有機憐酸), 무기인산(無機憐酸) 공(共)히 비중(比重) 1.7-2.0부(部)에서 최다(最多)였고, 이어 1.4-1.7배(部), 2.0 이하부(以上部)가 따랐다. 4. 비중별(比重別) 인산(燐酸)의 집적비율(集積比率)(각비중부인산(各比重部憐酸) 분포량(分布量)의 비중분화전(比重分畵前) Silt부(部)의 값에 대한 비율(比率))은 비중(比重) 1.7-2.0부(部)에서 최고(最高)(1.30~1.58)였으며, 1.4-1.7부(部)에서도 1 이상(以上)(1.22~1.47), 2.0이상부(以上部)에서 1 이하(以下)(0. 50~0.80)였다. 5. 입경별 및 비중별(比重別) 인산분포(憐酸分布), 집적(集積)에 대해 유기물기복합체에 의거(依據)하는 것으로 생각이 되었다. 또 무기인산(無機憐酸)의 분포(分布), 집적(集積)은 유기무기복합체를 형성(形成)하는 무기성분(無機成分)과 밀접(密接)한 것으로 보아 유기인산(有機憐酸)과 무기인산(無機憐酸)의 분포(分布), 집적요인(集積要因)사이에는 밀접(密接)한 관계(開係)가 있는 것으로 추정(推定)되었다.

  • PDF

옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究) (Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation)

  • 이대성;윤석규;이종혁;김정택
    • 자원환경지질
    • /
    • 제19권spc호
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사 (Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations)

  • 유근혜;박승식;김영성;신혜정;임철수;반수진;유정아;강현정;서영교;강경식;조미라;정선아;이민희;황태경;강병철;김효선
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.