• Title/Summary/Keyword: carbon offset

Search Result 77, Processing Time 0.022 seconds

Evaluation of Fracture Resistance Characteristics of SA 508 CL.1a Carbon Steel for Piping System (SA508 CL.1a 탄소강 배관소재의 파괴저항특성 평가)

  • Seok, Chang-Sung;Kang, Byoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1147-1154
    • /
    • 1999
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 CL.1a carbon steel, and their associated welds manufactured for primary coolant piping system of nuclear power plants. The effect of various parameters such as pipe size, welding method and chemical composition on the material properties were discussed. Test results showed that the offset of pipe size on tincture toughness was negligible, while the effect of welding method on fracture toughness was significant. In addition, Fracture toughness for carbon steel was influenced by silicon contents due to the different steel refining processes.

Quantification of Carbon Reduction Effects of Domestic Wood Products for Valuation of Public Benefit

  • Chang, Yoon-Seong;Kim, Sejong;Kim, Kwang-Mo;Yeo, Hwanmyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.202-210
    • /
    • 2018
  • This study was carried out to quantify degree of contribution of harvested wood product (HWP) on mitigation of climate change by valuation of public benefits, environmentally and economically. The potential carbon dioxide emission reduction of HWP was estimated by accounting carbon storage effect and substitution effect. Based on 2014 statistics of Korea Forest Service, domestic HWPs were sorted by two categories, such as wood products produced domestically from domestic and imported roundwood. The wood products were divided into seven items; sawnwood, plywood, particle board, fiberboard (MDF), paper (including pulp), biomass (wood pellet) and other products. The carbon stock of wood products and substitution effects during manufacturing process was evaluated by items. Based on the relevant carbon emission factor and life cycle analysis, the amount of carbon dioxide emission per unit volume on HWP was quantified. The amounts of carbon stock of HWP produced from domestic and from imported roundwood were 3.8 million $tCO_{2eq}$., and 2.6 million $tCO_{2eq}$., respectively. Also, each reduction of carbon emission by substitution effect of HWP produced from domestic and imported roundwood was 3.1 million $tCO_{2eq}$. and 2.1 million $tCO_{2eq}$., respectively. The results of this study, the amount of carbon emission reduction of HWP, can be effectively used as a basic data for promotion of wood utilization to revise and establish new wood utilization promotion policy such as 'forest carbon offset scheme', and 'carbon storage labeling system of HWP'.

Annual $CO_2$ Uptake by Urban Popular Landscape Tree Species (도시 주요조경수종의 연간 $CO_2$흡수)

  • 조현길;조동하
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.38-53
    • /
    • 1998
  • This study quantified annual net carbon uptake by urban landscape trees and provided equations to estimate it for Ginkgo biloba, platanus occidentalis, Zelkova serrata and Acer palmatum, based on measurement of exchange rate for two years growing seasons from Sep., 1995 to Aug., 1997. The carbon uptake was significantly influenced by photosynthetic capacity, photon flux density and pruning. Ginkgo biloba showed the highest rate of net CO\sub 2\ uptake per unit leaf area and Acer palmatum did the lowest rate among those species. A tree shaded by adjacent building over the growing seasons showed net CO\sub2\ uptake per unit leaf area much lower than another tree of the same species less shaded. Annual net carbon uptake per tree was 19kg for Zelkova serrata, but only 1 kg for Ginkgo biloba and Platanus occidentalis with crown volume dwarfed from pruning. One Zekoval serrata tree annually offset carbon emission from consumption of about 32 liter of gasoline or 83 kWh of electricity. Strategies to improve CO\sub 2\ uptake by urban landscape trees include planting of species with high potosynthetic capacity, sunlight-guaranteed road and building layout for street trees, planting of shade-tolerant species in the north of buildings, and relocation of utility lines to underground and minimized pruning.

  • PDF

Towards Sustainability of Tropical Forests: Implications for Enhanced Carbon Stock and Climate Change Mitigation

  • Rahman, Mizanur;Islam, Mahmuda;Islam, Rofiqul;Sobuj, Norul Alam
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.281-294
    • /
    • 2017
  • Tropical forests constitute almost half of the global forest cover, account for 35% of the global net primary productivity and thereby have potential to contribute substantially to sequester atmospheric $CO_2$ and offset climate change impact. However, deforestation and degradation lead by unsustainable management of tropical forests contribute to the unprecedented species losses and limit ecosystem services including carbon sequestration. Sustainable forest management (SFM) in the tropics may tackle and rectify such deleterious impacts of anthropogenic disturbances and climatic changes. However, the existing dilemma on the definition of SFM and lack of understanding of how tropical forest sustainability can be achieved lead to increasing debate on whether climate change mitigation initiatives would be successful. We reviewed the available literature with a view to clarify the concept of sustainability and provide with a framework towards the sustainability of tropical forests for enhanced carbon stock and climate change mitigation. We argue that along with securing forest tenure and thereby reducing deforestation, application of reduced impact logging (RIL) and appropriate silvicultural system can enhance tropical forest carbon stock and help mitigate climate change.

A Study on Sliding Shear(Mode II) Delamination of Woven Fabric composites for Carbody Structure (차체 구조용 섬유직물 복합재의 평면 전단(mode II) 층간분리 거동에 대한 시험적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.557-563
    • /
    • 2010
  • Mode II interlaminar fracture toughness was measured and fractured surfaces were observed of carbon/epoxy and glass/epoxy woven fabric composites for carbody structure. Woven fabric carbon/epoxy and glass/epoxy composites that made with prepreg and epoxy resin(RS1222) are used in carbody structure of Korean tilting train(TTX) and low floor bus. ENF(End Notched Flexure) specimens having $120mm{\times}20m{\times}5mm$ shape and 35mm initial crack were made with each composites and three point bending tests according to ASTM D790 were conducted for these specimens. Crack lengths in tests were recorded using optical microscope and digital camcorder. NL(Non Linear), 5% offset and Max. load points in load -displacement curves were checked and mode II interlaminar fracture toughness of these points were calculated and compared. Fractured surfaces of specimens were observed using optical microscope and mode II delamination behavior of each composites was discussed.

  • PDF

Carbon Reduction by and Quantitative Models for Landscape Tree Species in Southern Region - For Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia - (남부지방 조경수종의 탄소저감과 계량모델 - 동백나무, 배롱나무 및 가시나무를 대상으로 -)

  • Jo, Hyun-Kil;Kil, Sung-Ho;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • This study quantified, through a direct harvesting method, storage and annual uptake of carbon from open-grown trees for three landscape tree species frequently planted in the southern region of Korea, and developed quantitative models to easily estimate the carbon reduction by tree growth for each species. The tree species for the study included Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia, for which no information on carbon storage and uptake was available. Ten tree individuals for each species (a total of 30 individuals) were sampled considering various stem diameter sizes at given intervals. The study measured biomass for each part of the sample trees to quantify the total carbon storage per tree. Annual carbon uptake per tree was computed by analyzing the radial growth rates of the stem samples at breast height or ground level. Quantitative models were developed using stem diameter as an independent variable to easily calculate storage and annual uptake of carbon per tree for study species. All the quantitative models showed high fitness with $r^2$ values of 0.94-0.98. The storage and annual uptake of carbon from a Q. myrsinaefolia tree with dbh of 10 cm were 24.0 kg and 4.5 kg/yr, respectively. A C. japonica tree and L. indica tree with dg of 10 cm stored 11.2 kg and 8.1 kg of carbon and annually sequestered 2.6 kg and 1.2 kg, respectively. The above-mentioned carbon storage equaled the amount of carbon emitted from the gasoline consumption of about 42 L for Q. myrsinaefolia, 20 L for C. japonica, and 14 L for L. indica. A tree with the diameter size of 10 cm annually offset carbon emissions from gasoline use of approximately 8 L for Q. myrsinaefolia, 5 L for C. japonica, and 2 L for L. indica. The study pioneers in quantifying biomass and carbon reduction for the landscape tree species in the southern region despite difficulties in direct cutting and root digging of the planted trees.

Climate Change Policy and Carbon Trading Scheme and in Japan: Features and Lessons (일본의 기후변화 정책과 배출권거래제도: 특징과 시사점)

  • Lee, Soo-Cheol
    • Journal of Environmental Policy
    • /
    • v.9 no.4
    • /
    • pp.77-102
    • /
    • 2010
  • The purpose of this paper is to analyze the Japanese emission trading system and climate change policy thereby contributing to the instituting of similar systems that will be viable for the Korean context. In applying such analyses, it is important to include a careful consideration of cost sharing between stakeholders and firms, an enhancement of the trust worthiness of data concerning greenhouse gases, and an examination of related infrastructure such as emissions authentication agencies and their development. Moreover, it is important to minimize the outflow of domestic resources such as offset credit, green electricity certification system, and ecopoint, making compatible economic growth and carbon reduction thereby encouraging the production and dissemination of 'Environmental Value' as well as connecting 'Environmental Value' to a emission trading system.

  • PDF

Integrating Forestry Offsets into a Domestic Emission Trading Scheme in Korea (해외 배출권 시장 사례 분석과 국내 배출권 시장 도입에 있어서 산림분야 참여에 관한 고찰)

  • Han, Ki-Joo;Youn, Yeo-Chang
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.1-30
    • /
    • 2009
  • Emission trading schemes, exemplified by the EU Emission Trading Scheme, have been playing active roles in mitigating greenhouse gas emissions since the Kyoto Protocol employed an emission trading as one of the cost-effective mechanisms. The objective of this study is to investigate potential integration of forestry offsets in designing an emission trading scheme in South Korea. First, the study found feasible scopes in which forestry sectors can take part by analyzing five emission trading schemes: EU Emission Trading Scheme, Chicago Climate Exchange, New South Wales Greenhouse Gas Abatement Scheme, New Zealand Emission Trading Scheme, and Regional Greenhouse Gas Initiative. The rationale of including forestry offsets in a domestic emission trading scheme was derived from the fact that forestry offset credits can provide cost-effective ways for market participants to commit their emission targets and expand abatement activities through reducing greenhouse gases in other geographical locations as well as other industrial sectors. Even though forestry offset credits have risks induced by their technical complexities in terms of accounting, additionality, and leakage, the integration of forestry offset credits into an emission trading scheme would be able to provide positive opportunities both to forestry sectors and other industrial sectors. In addition, there are technical questions which need to be answered in order to maintain these opportunities.

  • PDF

Mechanical Properties and Solid Lubricant Wear Behavior of MMCs Reinforced with a Hybrid of $Al_{2}O_{3}$ and Carbon Short Fibers (알루미나와 탄소단섬유를 혼합한 금속복합재료의 기계적 성질과 고체윤활 마모거동)

  • 송정일;봉하동;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.968-980
    • /
    • 1995
  • Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites are fabricated by the direct squeeze infiltration method. From the microstructure of Al/Al$_{2}$O$_{3}$/C composites, uniform distribution of reinforcements and good bondings are found. Optimum processing conditions for preforms and squeeze castings are suggested. Mechanical properties, such as elastic modulus, elongation, 0.2% offset yield strength and ultimate tensile strength are obtained. Through the abrasive were test and wear surface analsis, wear behavior and its mechanism of AC2B aluminum and Al/Al$_{2}$O$_{3}$/C composites can be characterized under various sliding speed conditions. Tensile strenght elongation of Al/Al$_{2}$O$_{3}$/C composites are decreased with increasing the addition of carbon fiber. On the contrary, elastic modulus of Al/Al$_{2}$O$_{3}$/C composites is slightly improved compared with that of the unreinforced matrix alloy. The addition of carbon fiber to al/al$_{2}$O$_{3}$/C composites gives rise to improvement of the wear resistance. Specially, carbon chopped fibers play an important role in interfering sticking between the counter material and metal matirix composites. Al/Al$_{2}$O$_{3}$/C composites are suitable to high speed due to solid lubication of carbon. And wear model of Al/Al$_{2}$O$_{3}$/C composites is suggested by the examination of worn surfaces.

On the Rotational Barrier of Organic Molecules (I). Role of Axial Carbon in Ethane (유기분자의 내부 회전장벽에 관한 이론적 연구 (제1보). 에탄에서의 중심 탄소의 역할)

  • Young Sik Kim;Hojing Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.117-127
    • /
    • 1982
  • In order to analyze the role of axial carbon atoms in rotational barrier of ethane, we take the carbonless ethane, as a model, which is made of six hydrogens in coordinates of ethane. The energy of the system is calculated by McWeeny's open-shell restricted Hartree-Foch selfconsistent-field (RHF-SCF) method, and the transition density on the staggered-to-eclipsed rotation is examined. As being expected, the eclipsed form of the model is more stable than the staggered one. Through the transition density comparison of this model and real ethane, it is found that the existence of the axial carbon atoms induces the electronic density to be diluted in the vicinity of protonic sites and to be attracted to the region of carbon atoms or further to C-C bond region as the barrier is traversed. This migration of electronic charge tell us that the barrier to the internal rotation of ethane originates from the fact that the magnitude of electronic energy depression is not large enough to offset the increased nuclear-nuclear repulsion on the staggered-to-eclipsed rotation.

  • PDF