• Title/Summary/Keyword: carbon fibre composites

Search Result 25, Processing Time 0.023 seconds

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

A Novel Route to Realise High Degree of Graphitization in Carbon-carbon Composites Derived from Hard Carbons

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.111-116
    • /
    • 2003
  • Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between $1000^{\circ}C$ to $2500^{\circ}C$. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of $0.8\;m{\Omega}cm$, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.

  • PDF

Interface and Microstructure Development in Carbon/Carbon Composites

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.;Dhakate, S.R.;Rand, B.
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Performance of carbon-carbon composites is known to be influenced by the fibre matrix interactions. The present investigation was undertaken to ascertain the development of microstructure in such composites when carbon fibres possessing different surface energies (T-300, HM-35, P120 and Dialed 1370) and pitch matrices with different characteristics (Coal tar pitch $SP110^{\circ}C$ and mesophase pitch $SP285^{\circ}C$) are used as precursor materials. These composites were subjected to two different heat treatment temperatures of $1000^{\circ}C$ and $2600^{\circ}C$. Quite interesting changes in the crystalline parameters as well as the matrix microstructure are observed and attempt has been made to correlate these observations with the fibre matrix interactions.

  • PDF

Shielding Effectiveness of Electromagnetic Interference in ABS/Nickel Coated Carbon Fiber and Epoxy/Cu-Ni Fabric Nano Carbon Black Composites (ABS/Nickel 코팅 탄소섬유와 Epoxy/Copper-Nickel 직조 섬유 복합재료의 전자파차폐 효과)

  • Han, Gil-Young;Jung, Woo-Chul;Yang, In-Young;Sun, Hyang-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2012
  • Electromagnetic interference(EMI) shielding effectiveness(SE) was investigated in of woven fabric made of epoxy/copper-nickel fabrics and nickel coated carbon fiber reinforced acrylonitrile-butadiene-styrene(ABS) composites. The coaxial transmission line method was used to measure the EMI shielding effectiveness of the composites. We designed and constructed a measuring system, consisting of a network analyzer and a device that plays the serves as a sample holder and at the same time as a transmission medium of the incident electromagnetic wave. The measurement of SE were carried out frequency range from 100MHz to 2GHz. It is observed that the SE of the composits is the frequency dependent increase with the increase in nickel coated carbon fibre volume fraction. The nickel coating with 20wt% ABS composite was shown to exhibit up to 60dB of SE. The result that nickel coated carbon fibre ABS composite can be used for the purpose of EMI shielding as well as for some microwave applications.

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

Erosion Behavior of SiC Coated C/C Composites with Condition of Combustion Test

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Jae-Won
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.133-139
    • /
    • 2003
  • Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

  • PDF

Development of jute rope hybrid composite plate using carbon fibre

  • Nouri, Karim;Alam, Md. Ashraful;Mohammadhassani, Mohammad;Jumaat, Mohd Zamin Bin;Abna, Amir Hosein
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1095-1113
    • /
    • 2015
  • Jute rope is one of the most popular materials used for composites in various industries and in civil engineering. This experimental study investigated two types of jute rope with different diameters for jute rope composite plates to determine the best combination of jute rope and carbon fiber in terms of ratio and physical and mechanical properties. Eight combinations of carbon fiber and jute rope with different percentages of carbon fiber were analyzed. Tensile tests for the jute rope composite plate and hybrid jute rope composite were conducted, and the mechanical and physical properties of the specimens were compared. Thereafter, the ideal combinations of jute rope with an optimum percentage of carbon fiber were identified and recommended. These particular combinations had tensile strengths that were 2.23 times and 1.76 times higher than other varieties in each type.

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

Flexural strengthening of RC Beams with low-strength concrete using GFRP and CFRP

  • Saribiyik, Ali;Caglar, Naci
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.825-845
    • /
    • 2016
  • The Turkish Earthquake Code was revised in 1998 and 2007. Before these Codes, especially 1998, reinforced concrete (RC) beams with low flexural and shear strength were widely used in the building. In this study, the RC specimens have been produced by taking into consideration the RC beams with insufficient shear and tensile reinforcement having been manufactured with the use of concrete with low strength. The performance of the RC specimens strengthened with different wrapping methods by using of Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) composites have been examined in terms of flexural strength, ductility and energy absorption capacity. In the strengthening of the RC elements, the use of GFRP composites instead of CFRP composites has also been examined. For this purpose, the experimental results of the RC specimens strengthened by wrapping with CFRP and GFRP are presented and discussed. It has been concluded that although the flexural and shear strengths of the RC beams strengthened with GFRP composites are lower than those of beams reinforced with CFRP, their ductility and energy absorption capacities are very high. Moreover, the RC beams strengthened with CFRP fracture are more brittle when compared to GFRP.

Flexural strengthening of RCC beams using FRPs and ferrocement - a comparative study

  • Ganesan, N.;Bindurania, P.;Indira, P.V.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper deals with a comparative study among three different rehabilitation techniques, namely, (i) carbon fibre reinforced polymer (CFRP), (ii) glass fibre reinforced polymer (GFRP) and (iii) ferrocement on the flexural strengthening of reinforced cement concrete (RCC) beams. As these different techniques have to be compared on a level playing field, tensile coupon tests have been carried out initially for GFRP, CFRP and ferrocement and the number of layers required in each of these composites in terms of the tensile strength. It was found that for the selected constituents of the composites, one layer of CFRP was equivalent to three layers of GFRP and five layers of wiremesh reinforcement in ferrocement. Rehabilitation of RCC beams using these equivalent laminates shows that all the three composites performed in a similar way and are comparable. The parameters selected in this study were (i) the strengthening material and (ii) the level of pre-distress induced to the beams prior to the rehabilitation. It was noticed that, as the levels of pre-distress decreases, the percentage attainment of flexural capacity and flexural stiffness of the rehabilitated beams increases for all the three selected composites used for rehabilitation. Load-deflection behavior, failure modes, energy absorption capacity, displacement ductility and curvature ductility were compared among these composites and at different distress levels for each composite. The results indicate that ferrocement showed a better performance in terms of ductility than other FRPs, and between the FRPs, GFRP exhibited a better ductility than the CFRP counterpart.