• Title/Summary/Keyword: carbon fiber reinforced polymer composite

Search Result 158, Processing Time 0.019 seconds

Effect of the Circular Saw-Blade Type and Wear on the Cutting Quality of a Glass Carbon-Fiber Hybrid Composite (원형 톱날의 형태와 마모가 유리 탄소섬유 하이브리드 복합재료의 절단 품질에 미치는 영향)

  • Baek, Jong-Hyun;Joo, Chang-Min;Kim, Su-Jin;Park, Yoon-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.72-79
    • /
    • 2021
  • A circular saw is an effective tool for cutting glass and carbon-fiber hybrid composites. This study investigated tool wear and cut quality when reusing saw blades. The carbide saws wear four times faster than the new ones, and polycrystalline diamond (PCD) is very resistant to tool wear, except at the end of its lifespan. The cut cross-section quality is affected by the blade type, tool wear, and spindle speed. Alternate top bevel (ATB)-type blades are suitable for cutting fiber-reinforced plastics, but triple-chip grind (TCG)-type blades are unsuitable because they cause fiber-pullout defects. Tool wear and low spindle speeds increase the occurrence of arc scratches, due to the rear saw blade. A microscopic examination showed that the burr, which is a mixture of fiber chips and epoxy matrix, was bonded on top, and glass-fiber delamination occurred on the bottom glass-fiber-reinforced polymer (GFRP) surface.

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics

  • Gulsan, Mehmet Eren;Mohammedameen, Alaa;Sahmaran, Mustafa;Nis, Anil;Alzeebaree, Radhwan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.199-220
    • /
    • 2018
  • In this study, the effects of sulphuric acid on the mechanical performance and the durability of Engineered Cementitious Composites (ECC) specimens were investigated. The carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP) fabrics were used to evaluate the performances of the confined and unconfined ECC specimens under static and cyclic loading in the acidic environment. In addition, the use of CFRP and BFRP fabrics as a rehabilitation technique was also studied for the specimens exposed to the sulphuric acid environment. The polyvinyl alcohol (PVA) fiber with a fraction of 2% was used in the research. Two different PVA-ECC concretes were produced using low lime fly ash (LCFA) and high lime fly ash (HCFA) with the fly ash-to-OPC ratio of 1.2. Unwrapped PVA-ECC specimens were also produced as a reference concrete and all concrete specimens were continuously immersed in 5% sulphuric acid solution ($H_2SO_4$). The mechanical performance and the durability of specimens were evaluated by means of the visual inspection, weight change, static and cyclic loading, and failure mode. In addition, microscopic changes of the PVA-ECC specimens due to sulphuric acid attack were also assessed using scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that PVA-ECC specimens produced with low lime fly ash (LCFA) showed superior performance than the specimens produced with high lime fly ash (HCFA) in the acidic environment. In addition, confinement of ECC specimens with BFRP and CFRP fabrics significantly improved compressive strength, ductility, and durability of the specimens. PVA-ECC specimens wrapped with carbon FRP fabric showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabric. Both FRP materials can be used as a rehabilitation material in the acidic environment.

Feasibility Study of a 500-ton Class Patrol Vessel Made of Carbon Fiber Reinforced Polymer (500톤급 탄소섬유 복합소재 경비함 건조가능성 검토)

  • Jang, Jaewon;Lee, Sang-Gyu;Zhang, Haiyang;Maydison, Maydison;Lee, Ju-Hyeong;Oh, Daekyun;Im, Sanghyuk;Kwon, Yongwon;Hwang, Inhyuck;Han, Zhiqiang
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.347-358
    • /
    • 2022
  • Carbon fiber is an excellent structural material, which has been proven in many industries, and the shipbuilding industry is no exception. In particular, in advanced maritime countries, special ships of the Navy and Coast Guard with carbon fiber composite hulls have already been deployed. In Korea, carbon fiber composite materials have been applied to a 10-ton class leisure craft or a 30-ton class patrol, but no research has been done on a hundred of tons or more vessels. In this study, the feasibility study of a 500-ton patrol vessel with a carbon fiber composite hull was conducted through an analysis of similar cases abroad. As a result, it was recognized that the developed hull can be reduced in weight by about 21% to 25% compared to the existing aluminum or FRP hull. It was also confirmed that this light-weight effect can induce the improvement of the maximum speed and the improvement of the operating range via simulations.

A Study on the Mechanical Property Evaluation of Carbon/Epoxy Composite Material for Aerospace Application (우주항공용 탄소/에폭시 복합재료의 기계적 특성 평가에 관한 고찰)

  • Lee, Ho-Sung;Min, Kyung-Ju
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.149-149
    • /
    • 2003
  • This paper presents the work peformed in a program developing composite material which properties satisfy structural and thermal requirements for aircrafts and spacecrafts. In the aerospace vehicle structures, the specific strength of the materials is one of the important requirements and this is why polymer matrix composite material with reinforced carbon fiber is widely used. However, the mechanical properties of the composite material have been known to be dependent on processing and this difficulties in evaluation have caused a lot of mechanical tests for each batch.

  • PDF

Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading

  • Su, Li;Li, Xiaoran;Wang, Yuanfeng
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.411-427
    • /
    • 2016
  • While the cyclic behaviour of fiber-reinforced polymer (FRP)-confined columns is studied rather extensively, the cyclic response especially the energy dissipation of FRP-confined damaged and undamaged square RC columns is not yet fully understood. In this paper, an experimental and numerical investigation was conducted to study the cyclic behavior of two different types of Carbon FRP (CFRP)-confined square RC columns: strengthened and repaired. The main variables investigated are initial damage, confinement of CFRP, longitudinal steel reinforcement ratio. The experimental results show that lower initial damage, added confinement with CFRP and longitudinal reinforcement enhance the ductility, energy dissipation capacity and strength of the columns, decrease the stiffness and strength degradation rates of all CFRP-confined square RC columns. Two hysteretic constitutive models were developed for confined damaged and undamaged concrete and cast into the non-linear beam-column fiber-based models in the software Open System for Earthquake Engineering Simulation (OpenSees) to analyze the cyclic behavior of CFRP-confined damaged and undamaged columns. The results of the numerical models are in good agreement with the experiments.

Chemorheological Behavior of Cyanate Ester Resin and Properties of Carbon Fiber Reinforced Polymer Composites (시아네이트 에스터 수지의 화학유변학적 거동 및 탄소섬유강화 고분자 복합재료의 물성)

  • Na, Hyo Yeol;Yoon, Byung Chul;Kim, Seung Hwan;Lee, Seong Jae
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • Carbon fiber reinforced polymer (CFRP) composites consist of carbon fibers in a polymer matrix. Recently, CFRP composites having high thermal stability and low outgassing are finding their use in high performance materials for aerospace and electronics applications under high temperature and high vacuum conditions. Cyanate ester resin is one of the most suitable matrix resins for this purpose. In this study, proper combination of cyanate ester and catalyst, curing behavior, and cure cycle were determined by chemorheology. Optimum condition was found to be catalyst content of 100 ppm and curing temperature of $150^{\circ}C$. Thermal stability and outgassing of cured resin composition were analyzed and the results showed thermal decomposition temperature of $385^{\circ}C$ and total mass loss of 0.29%. The CFRP prepregs and subsequent composites were fabricated by predetermined resin composition and the cure condition. Tensile moduli of the composites were compared with theoretical models and the results were very consistent.

Tensile response of steel/CFRP adhesive bonds for the rehabilitation of civil structures

  • Matta, F.;Karbhari, Vistasp M.;Vitaliani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.589-608
    • /
    • 2005
  • There is a growing need for the development and implementation of new methods for the rapid and cost-effective rehabilitation of deteriorating steel structural components to offset the drawbacks related to welding and/or bolting in the field. Carbon fiber reinforced polymer (CFRP) composites provide a potential alternative as externally bonded patches for strengthening and repair of metallic structural members for building and bridge systems. This paper describes results of an investigation of tensile and fatigue response of steel/CFRP joints simulating scenarios of strengthening and crack-patching. It is shown that appropriately designed schemes, even when fabricated with levels of inaccuracy as could be expected in the field, can provide significant strain relief and load transfer capability. A simplified elasto-plastic closed form solution for stress analysis is presented, and validated experimentally. It is shown that the bond development length remains constant in the linear range, whereas it increases as the adhesive is deformed plastically. Fatigue resistance is shown to be at least comparable with the requirements for welded cover plates without attendant decreases in stiffness and strength.

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

Fatigue evaluation and CFRP strengthening of diaphragm cutouts in orthotropic steel decks

  • Ke, Lu;Li, Chuanxi;He, Jun;Lu, Yongjun;Jiao, Yang;Liu, Yongming
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.453-469
    • /
    • 2021
  • The cracking at the transverse diaphragm cutout is one of the most severe fatigue failures threatening orthotropic steel decks (OSDs), whose mechanisms and crack treatment techniques have not been fully studied. In this paper, full-scale experiments were first performed to investigate the fatigue performance of polished cutouts involving the effect of an artificial geometrical defect. Following this, comparative experimental testing for defective cutouts strengthened with carbon fiber-reinforced polymer (CFRP) was carried out. Numerical finite element analysis was also performed to verify and explain the experimental observations. Results show that the combinative effect of the wheel load and thermal residual stress constitutes the external driving force for the fatigue cracking of the cutout. Initial geometrical defects are confirmed as a critical factor affecting the fatigue cracking. The principal stress 6 mm away from the free edge of the cutout can be adopted as the nominal stress of the cutout during fatigue evaluation, and the fatigue resistance of polished cutouts is higher than Grade A in AASHTO specification. The bonded CFRP system is highly effective in extending the fatigue life of the defective cutouts. The present study provides some new insights into the fatigue evaluation and repair of OSDs.