• Title/Summary/Keyword: carbon fiber reinforced plastic (CFRP) strips

Search Result 6, Processing Time 0.025 seconds

Structural behavior of steel beams strengthened with CFRP strips and cables

  • Lim, Donghwan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.289-298
    • /
    • 2022
  • In the present study, structural behavior of steel beams strengthened with CFRP strips and cables was investigated by a series of experiments. For this purpose, two groups of experimental studies were carried out: one for the beam series strengthened only with CFRP strips and the other for the steel beam series strengthened with CFRP strips and prestressed wires. From this test, it is found that the flexural stiffness and strength of the steel beams strengthened with CFRP strips and cables were significantly improved comparing to the un-strengthened one. Three failure modes such as sudden de-bonding, splitting and rupturing of CFRP strips were observed. The ultimate tensile strains of attached CFRP strips on the steel beams were noticed in the range between 8,000με and 11,000με, and this result disclose the perfect composite reaction CFRP strips and steel beams.

Experimental Study of Flexural Behavior of Steel Beam Strengthened with the Fiber Reinforced Polymer Plastic(FRP) Strips (섬유보강플라스틱(FRP) 스트립으로 보강한 철골보의 휨거동에 관한 실험적연구)

  • Choi, Sung Mo;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • This paper presents the experimental results of flexural behavior of steel beam strengthened with fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Four H beams were fabricated strengthened with aramid strips and carbon strips and one control specimen were also fabricated. Among them two specimens were strengthened with partial length. The H-beams had two types of failure mode, depending on the length of the FRP strips:(1) strip debonding in beams with partial length reinforcement and (2) strip rupture in beams with full length reinforcement. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.

Failure and Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 파괴거동 및 휨 거동 특성)

  • Lim, Dong Hwan;Park, Sung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.289-295
    • /
    • 2008
  • The purpose of this study was to examine the flexural behavior of reinforced concrete beams strengthened with CFRP strips. A total of 12 rectangular beams were tested. Test variables in this study were the shapes, bonded length and the number of longitudinal layers of CFRP strips. From the experimental study, flexural capacity of the beams strengthened with CFRP strips significantly increased compared to the reinforced concrete beam without a CFRP strip. Maximum increase of ultimate strength was found about 120% more than the control beam. In this test, most of the strengthened beams failed suddenly due to the debonding of CFRP strips. It is also observed that the debonding of the strip was initiated in the flexural zone of the beam and propagated rapidly to the end of the beam. The ultimate tensile strains of CFRP strips in this test were occurred at the level of 36% of rupture tensile strength of the CFRP strip, and an analytical approach to compute the flexural strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted.

Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판 (CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동)

  • Lim, Dong-Hwan;Nam, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2008
  • The main goal of this study was to examine the shear behavior of reinforced concrete beams strengthened with CFRP strups. Seven rectangular beams were tested. The test variables were the configuration types, spacing length of CFRP strips and the amount of reinforced stirrups bars. From this experimental study, the shear capacity of beams strengthened with CFRP increased significantly compared to the beam without CFRP strip. Maximum increase of ultimate shear strength was found about 100% more than that of the beam without a CFRP strip and the CFRP strips attached in the shear region can resist the occurrence of the initial shear cracks and the propagation of major shear cracks. In this test, most of the shear strengthened beams failed suddenly due to the debonding of CFRP strips. A calculation of the shear strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted and the comparisons were made with the test results.

A Study on the Strength Enhancement of Wale in Temporary Retaining Structures (흙막이 지하 가시설 구조체의 띠장 휨 강성 증대를 위한 연구)

  • Lim, Dong Hwan;Lee, Yong Jun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.91-96
    • /
    • 2009
  • The purpose of this study was to investigate a method for the strength enhancement of wale in temporary retaining structures. Tests on the wale structures strengthened with carbon fibre reinforced plastic (CFRP) strips and prestressed with seven wire strands were conducted. From this test, it is found that the flexural stiffness and strength of the wales strengthened with CFRP strips and seven wire strands were significantly improved compared to the unstrengthened one. The ultimate tensile strains of attached CFRP strips on the steel beam were in the range of 8,000 and $11,000{\mu}{\epsilon}$, and it is noticed that the bonding ability with steel and CFRP strips is good. In this paper, a new method for enhancing the strength of wale in retaining structures is suggested.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.