• 제목/요약/키워드: carbon fiber reinforced composite materials

검색결과 416건 처리시간 0.031초

서프보드 적용을 위한 하이브리드 복합재료의 열적 특성 (Thermal Characteristics of Hybrid Composites for Application to Surfboard)

  • 김윤해;이진우;박창욱;박수정
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.

인공고관절 모사조건하에서의 탄소섬유 복합재료의 마찰 및 마모 특성 (Friction and wear properties of carbon fiber reinforced epoxy composite for the artificial hip joint application)

  • 송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.239-241
    • /
    • 1999
  • Recently, the friction and wear behaviors of UHMWPE, ceramic and metal is being researched actively for the use as an artificial hip-joint. In this study, because of good wear properties of carbon fiber, we made experiments about the friction and wear of carbon fiber reinforced epoxy composite under the lubricative and the dry condition. The possibilities of carbon-carbon composite for the artificial hip joint application was studied from this results.

  • PDF

Effects of SiC Coating of Carbon Fiber on Mechanical Properties in Short Carbon Fiber Reinforced Al Matrix Composite

  • Jin Man Jang;Se-Hyun Ko;Wonsik Lee
    • Archives of Metallurgy and Materials
    • /
    • 제66권4호
    • /
    • pp.941-946
    • /
    • 2021
  • A356 Al composites reinforced by short carbon fiber were prepared through the 2-step process: fabrication of a composite precursor and ultrasonication of the precursor melt. The short carbon fibers were coated with 0.15~1.5 ㎛ thick SiC layer by a carbothermal reaction, and an amount of the carbon fiber reinforcement was determined to be 1.5 vol.% and 4.0 vol.%, respectively. The addition of the carbon fiber increased the hardness of A356 alloy. However, tensile strength did not increase in the as-cast composites regardless of the SiC coating and volume fraction of the carbon fiber, due to the debonding which reduced load transfer efficiency from matrix to fiber at the interface. After T6-treatment of the composites, a significant increase in strength occurred only in the composite reinforced by the SiC-coated short carbon fiber, which was considered to result from the formation of a precipitate improving the Al/SiC interfacial strength.

LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구 (A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method)

  • 박명규;박시우
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.80-85
    • /
    • 2016
  • 탄소섬유강화 복합재는 기계적 물성이 우수하여 다양한 산업분야에서 활용되고 있으나 섬유길이가 짧은 단섬유 형태로 함침 되고 있어 강도와 강성을 증대시키는데 한계가 있다. 이를 보완하기 위한 LFT-D성형은 탄소 또는 유리섬유를 열가소성 수지와 혼합하여 압출 후 프레스 성형하여 제품을 만드는 공법으로 연속공정이 가능하고 사출성형에 비해 생산성이 높아 자동차 구조용 부품을 제작하는데 사용할 수 있다. 본 연구에서는 LFT-D공법으로 성형된 탄소 장섬유강화 열가소성 복합소재의 기계적 특성을 파악하기 위하여 탄소 장섬유의 함침과 압출공정을 수행할 수 있는 Lab scale의 소형 압출기 시스템을 제작하였다. Lab scale의 소형 압출기를 사용하여 제작된 탄소 장섬유 복합소재를 프레스 성형하여 시편을 제작하고 재료의 기계적 특성을 평가한 결과, 탄소섬유길이, 프레스 가압압력 및 탄소섬유 함유량이 복합소재의 강도 및 강성의 증가에 영향을 미침을 알 수 있었다. 향후 탄소 장섬유 복합소재의 기계적 성질 향상을 위해서 혼합 스크류 설계, 탄소 섬유코팅 등에 대한 추가적인 연구가 필요하다.

부직포를 삽입한 탄소섬유강화 복합적층판의 인장특성 평가 (Evaluation of Tensile Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat)

  • 정성균
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.96-100
    • /
    • 1997
  • Tensile properties of carbon fiber reinforce composite laminates with non-woven carbon mat are evaluated in this paper. Composite laminates are made by inserting non-wovon carbon mat between layers, The specimens were cut and polished according to ASTM standard . Longitudinal and Transverse Young's modulus are obtained by tensile test. Young's moduli without non-woven carbon mat are compared with those with non-woven carbon mat. Longitudinal and Transverse tensile strength are also investigated. Experimental results show that the transverse Young's modulus of composite materials with non-woven carbon mat is about 10% higher than that of composite materials without non-woven carbon mat. Longitudinal tensile strength of composite materials with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구 (An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members)

  • 박제용;안동준;정상균;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF

샌드위치 구조형 섬유강화 복합재료의 전파흡수특성 (Microwave Absorbing Properties of Fiber Reinforced Composites with Sandwitch Structure)

  • 김상영;김상수
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.442-446
    • /
    • 2002
  • Design of microwave absorbers using high frequency properties of fiber reinforced composites are investigated. Two kinds of composite materials (glass and carbon) are used and their complex permittivity and permeability are measured by transmission/reflection technique using network analyzer. Low dielectric constant and nearly zero dielectric loss are determined in glass fiber composite. However, carbon fiber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

탄소섬유그리드 보강 콘크리트 부재의 거동에 대한 수치해석적 연구 (Numerical Analysis on the Behavior of Carbon Fiber Grid Reinforced Concrete Members)

  • 김학군;정재호;정상균;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.143-148
    • /
    • 1999
  • In this paper we present the results of an analytical investigation on the existing concrete structures which are reinforced with carbon fiber grid. The carbon fiber grid and polymer mortar are utilized in the reinforcement of concrete column, beam, and tunnel lining. The physical and mechanical properties of the carbon fiber grid and polymer mortar were obtained experimentally and then used in the analytical investigation. In the analysis concrete structures are modeled with 3-D solid finite elements and the carbon fiber grid is modeled with space frame elements. Through the investigation reinforcing effect of carbon fiber grid on the existing concrete structures is confirmed.

  • PDF

Periodic-Cell Simulations for the Microscopic Damage and Strength Properties of Discontinuous Carbon Fiber-Reinforced Plastic Composites

  • Nishikawa, M.;Okabe, T.;Takeda, N.
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.77-93
    • /
    • 2009
  • This paper investigated the damage transition mechanism between the fiber-breaking mode and the fiber-avoiding crack mode when the fiber-length is reduced in the unidirectional discontinuous carbon fiber-reinforced-plastics (CFRP) composites. The critical fiber-length for the transition is a key parameter for the manufacturing of flexible and high-strength CFRP composites with thermoset resin, because below this limit, we cannot take full advantage of the superior strength properties of fibers. For this discussion, we presented a numerical model for the microscopic damage and fracture of unidirectional discontinuous fiber-reinforced plastics. The model addressed the microscopic damage generated in these composites; the matrix crack with continuum damage mechanics model and the fiber breakage with the Weibull model for fiber strengths. With this numerical model, the damage transition behavior was discussed when the fiber length was varied. The comparison revealed that the length of discontinuous fibers in composites influences the formation and growth of the cluster of fiber-end damage, which causes the damage mode transition. Since the composite strength is significantly reduced below the critical fiber-length for the transition to fiber-avoiding crack mode, we should understand the damage mode transition appropriately with the analysis on the cluster growth of fiber-end damage.