• Title/Summary/Keyword: carbon emission reduction effect

Search Result 131, Processing Time 0.022 seconds

Effects of Commuting Distance Reduction by Teleworking on Carbon Dioxide Emission: Focusing on the Seoul Metropolitan Area (지역기반 원격근무를 통한 출근 통행거리 저감이 CO2 배출에 미치는 영향: 수도권 지역을 대상으로)

  • Kang, Jihan;Oh, Kyushik
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.89-102
    • /
    • 2014
  • The establishment and operation of Region-based Teleworking Centers(RTC) in Korea is in the initial stage at the moment. Although some studies have been conducted on telecommuting at home, few studies have been performed on the effects of all-out expansion and diffusion of region-based Teleworking Centers. Therefore, this study analyzed the reduction effect of commuting distance which is possible to obtain from the establishment of Teleworking Centers, based on the network in the Seoul Metropolitan Area, Subsequently, quantitative reduction of the effects of $CO_2$ were calculated from region-based Teleworking Centers. The results of the analysis indicated that region-based Teleworking Centers could reduce a total of 911 tons of $CO_2$ per day. When applying these results to 258 working days per year (according to Statistics Korea), 235,056 tons of $CO_2$ can be reduced annually by the establishment of Teleworking Centers. With quantity on environmental utility to be obtained from the establishment of Teleworking Centers, this study can be utilized as a guideline for selecting effective locations of Teleworking Centers in the future. It can also be helpful in decisions to determine the priority of extending operations of Teleworking Centers through comparisons among administrative districts.

A Feasibility Study on Thermal Energy Resource in Deep Ocean Water (해양심층수 에너지자원 이용 타당성 분석 연구)

  • Kim, Jeong-Hyop;Kim, Gwang-Tae;Park, Se-Hun;Oh, Wee-Yeong;Kim, Hyeon-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Annual power consumption of our country is positioned in the upper percentile in the world, and because the proportion of fossil power generation is high, which ranks the 10th $CO_2$ emission country. In this regard, government has established and is implementing the National Energy Basic Plan to realize to get out of fossilization in energy supply while focusing on securing the technology for renewable energy as well as its commercialization in order to reduce greenhouse gas. Resource recovery technology for deep seawater thermal energy which is one of renewable energies is newly getting attention domestically as well as in overseas for securing resources and environmental improvement as a core technology for multilateral use of marine resources for low carbon and green growth. Economic feasibility analysis was conducted for the research and development as follows on the use of ocean thermal energy conversion and seawater air conditioning. First, in the case of power generation using deep seawater and warm discharge water from ocean thermal energy conversion plant of 1MW level, it is judged that the economic feasibility is insufficient but the feasibility will be significantly improved if we consider not only power generation but also drinking water and certified emission reduction by developing the power plant to the size for commercialization. Second, the economic feasibility for the use of deep seawater as air conditioning for the power plant of 1,000RT level turned out to be very good. Especially, when we consider certified emission reduction, it will be possible to secure sufficient economic feasibility. When we use it in connection with ocean thermal energy conversion, water conversion and agricultural and fishery use, it is judged that economic ripple effect will be significant and therefore it will be necessary to conduct research and development for early commercialization, distribution and diffusion of deep seawater energy.

Studies on Natural Plant Extracts for Methane Reduction in Ruminants (반추동물의 메탄감소를 위한 천연식물 추출물에 관한 연구)

  • Lee, Shin-Ja;Eom, Jun-Sik;Lee, Su-Kyoung;Lee, Il-Dong;Kim, Hyun-Sang;Kang, Han-Beyol;Lee, Sung-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.901-916
    • /
    • 2017
  • This study was conducted to evaluate natural plant extracts for methane gas reduction in ruminants. Rumen fluid was collected from cannulated Hanwoo cow ($450{\pm}30kg$) consuming 400 g/kg concentrate and 600 g/kg timothy. The 15 ml of mixture comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically into 50 ml serum bottles. Rumen fluid contents were collected and in vitro fermentation prepared control (timothy, 300 mg), ginseng, balloon flower, yucca plant, camellia, tea plant and ogapi extracts were added at the level of 5% against 300 mg of timothy as a substrate (v/w) and incubated for 3, 6, 9, 12, 24, 48, and 72 h. In vitro pH values range 6.55~7.41, this range include rumen titration. The dry matter digestibility was not differ between all treatments and control. Total gas emission was significantly higher (p<0.05) in ginseng and balloon flower treatments on 24 h than in control. Carbon dioxide emission was not differ all treatments on 9 h than in control and significantly higher (p<0.05) yucca plant, camellia and tea plant treatments on 12 h than control. Methane emission was not differ all treatments on 6 h than in control. The rumen microbial growth rate was significantly higher (p<0.05) in ginseng, balloon flower on 12 h and significantly higher (p<0.05) in ginseng, yucca plant, tea plant and ogapi treatments on 24 h than in control. Total VFA was significantly higher (p<0.05) in tea plant and ogapi treatments on 12 h than in control and significantly higher (p<0.05) in ginseng, balloon flower treatments on 48 h than in control. Acetic acid was significantly lower (p<0.05) in ginseng and balloon flower treatments on 24 h than in control. Propionic acid was significantly higher (p<0.05) in ginseng and balloon flower treatments on 48 h than in control. As a results, sixth natural plant extracts had no significant effect dry matter digestibility and negative on rumen fermentation, but not effect methane reduction.

3D BIM-based Building Energy Efficiency Solution for Carbon Emission Reduction (탄소저감을 위한 3D BIM 기반 건물 에너지 효율화 방안)

  • Lee, Dong Hwan;Kwon, Kee Jung;Shin, Ju Ho;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1235-1242
    • /
    • 2013
  • This study deals with the BIM (Building Information Modeling)-based energy performance analysis implemented in EnergyPlus. The BIM model constructed at Revit is updated at Design Builder, adding HVAC models and converted compatibly with the EnergyPlus. We can obtain the input values about HVAC system and building environment such as HVAC system efficient, the number of air changes and energy consumption of equipment on applying GAs (Genetic algorithms). After modification about HVAC system, Optimization about HVAC system energy consumption can be analyzed. In order to maximize the building energy performance, a genetic algorithm (GA)-based optimization technique is applied to the modified HVAC models. Throughout the proposed building energy simulation, finally, the best optimized HVAC control schedule for the target building can be obtained in the form of "supply air temperature schedule". Throughout the supply air temperature schedule is applied to energy performance simulation, we obtained energy saving effect result on simulation.

An Analysis on the Effect of Environmental Improvement on Replacing CNG Bus in Seoul with Electric Bus (서울의 CNG버스를 전기버스로 대체했을 때 환경 개선 효과 분석)

  • Choi, Byeong-Joo;Na, Hae-Joong;Choi, Uk-Don;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.821-827
    • /
    • 2020
  • In particular, vehicles with internal combustion engines of public transportation such as diesel and CNG buses are in urgent need of measures to reduce emissions as they have a long daily total mileage, long driving hours and a large number of vehicles. In this paper, the fuel consumption rate (km/kWh) was actually measured through road test of electric buses. Based on the measured values, CO2 emissions from internal combustion engines and electric buses were calculated per bus. In addition to environmental improvement effects such as the expected reduction of carbon dioxide compared to CNG buses when replacing city buses with electric buses, additional effects were analyzed when the replacement of CNG buses is expanded to electric buses.

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

A Study on the Activities Priority and its Effects for Green Port Construction (그린포트 구축을 위한 활동 순위 및 효과분석에 관한 연구)

  • Kim, Hwan-Seong;Jo, Min-Ji;Wang, Liru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.415-416
    • /
    • 2011
  • As the has been brought out in 1997, many ports pay attention to greenhouse gas emission reduction and try to develop the port as an Green Port. The purpose of this paper is to establish the activities priority for Green Port construction and analysis its efficiency for the port competition. First of all, the activities for Green Port is introduced and showed its characteristics. To analysis these effectiveness for Green Port, the questionnaire survey is done by considering the opinion of port specialists. And by using AHP analysis method, the priority between the port activities is obtained and its effect for Green Port is taken by considering port competitiveness.

  • PDF

Study on PCM Applied Thermal Storage Wall System to Reduce Cooling Energy (냉방에너지 저감을 위한 PCM적용 축열벽 시스템 연구)

  • Lee, Kyuyoung;Ryu, Ri;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.247-256
    • /
    • 2014
  • The regulations to reduce energy consumption and carbon dioxide emission in building sectors are being developed and promoted all over the world. However, in Korea, as balcony extension of the apartments has been legally allowed, it became prevalent and resulted in excessive energy consumption. This study derived the possibility of PCM application to the thermal storage wall system through theoretical consideration and investigated the problems occurring when the balcony space has been extended to the diverted space. In addition, this study aims at the possibility of verifying the installation and confirming the cooling energy reduction effect, by conducting measuring tests with the actual installation of PCM applied thermal storage wall system. As a result of theoretical consideration, it is determined that the disadvantages with the existing thermal storage wall system can be complemented by applying PCM, and this study suggests the PCM applied Thermal Storage Wall System. The study was conducted on 1/6 of a miniature inner room of a domestic apartment with 84 $m^2$ of exclusive area. From the results of actual measurements, it is confirmed that the balcony extension structure can gain 11.3% of more calories than the existing balcony structure, resulting in the increase in cooling energy usage. It is determined that the installation of the PCM applied Thermal Storage Wall System may gain 25.2% of less calories to reduce cooling energy usage.

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

Analysis of Contribution to Net Zero of Non-Urban Settlement - For Green Infrastructure in Rural Areas - (비도시 정주지의 탄소중립 기여도 분석 - 농촌지역 그린인프라를 대상으로 -)

  • Lee, Dong-Kyu;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • This study was conducted to provide basic data that can be used when establishing Net Zero policies and implementation plans for non-urban settlements by quantitatively analyzing the Net Zero contribution to green infrastructure in rural areas corresponding to non-urban settlements. The main purpose is to first, systematize green infrastructure in rural areas, secondly derive basic units for each element of green infrastructure, and thirdly quantify and present the impact on Net Zero in Korea using these. In this study, CVR(Content Validity Ration) analysis was performed to verify the adequacy of green infrastructure elements in rural areas derived through research and analysis of previous studies, is as follows. First, Hubs of Green infrastructure in rural area include village forests, wetlands, farm land, and smart farms with a CVR value of .500 or higher. And Links of Green infrastructure in rural area include streams, village green areas, and LID (rainwater recycling). Second, the basic unit for each green infrastructure element was presented by classifying it into minimum, maximum, and median values using the results of previous studies so that it could be used for spatial planning and design for Net Zero. Third, when Green infrastructure in rural areas is applied to non-urban settlements in Korea, it is analyzed that it has the effect of indirectly reducing CO2 by at least 70.76 million tons and up to 141.16 million tons. This is 3.4 to 6.7 times the amount of CO2 emission from the agricultural sector in 2019, and it can be seen that the contribution to Net Zero is very high. It is expected to greatly contribute to the transformation of the ecosystem. This study quantitatively presented the carbon-neutral contribution to settlements located in non-urban areas, and by deriving the carbon reduction unit for each element of green infrastructure in rural areas, it can be used in spatial planning and design for carbon-neutral at the village level. It has significance as a basic research. In particular, the basic unit of carbon reduction for each green infrastructure factors will be usable for Net Zero policy at the village level, presenting a quantitative target when establishing a plan, and checking whether or not it has been achieved. In addition, based on this, it will be possible to expand and apply Net Zero at regional and city units such as cities, counties, and districts.