• Title/Summary/Keyword: carbon dioxide trapping

Search Result 8, Processing Time 0.02 seconds

Impact of carbon dioxide on the stability of the small-scale structures by trapping the material properties

  • Zhou, Yunlong;Wang, Jian
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • The existence of active material in the environment causes the small-scale systems to be sensitive to the actual environment. Carbon dioxide is one of the active materials that exists a lot in the air conditions of the living environment. However, in some applications, the carbon dioxide-coated is used to improve the performance of systems against the destructive factors such as the corrosion; nevertheless, in the current research, the stability analysis of a carbon dioxide capture mechanism-coated beam is investigated according to the mathematical simulation of a rectangular composite beam utilizing the modified couple stress theory. The composite mechanism of carbon dioxide trapping is made of a polyacrylonitrile substrate that supports a cross-link polydimethylsiloxane gutter layer as the carbon dioxide mechanism trapping. Three novel types of carbon dioxide trapping mechanism involving methacrylate, poly (ethylene glycol) methyl ether methacrylate, and three pedant methacrylates are considered, which were introduced by Fu et al. (2016). Finally, according to introducing the methodology of carbon dioxide (CO2) trapping, the impact of various effective parameters on the stability of composite beams will be analyzed in detail.

Dynamic analysis of the micropipes reinforced via the carbon dioxide adsorption mechanism based on the mathematical simulation

  • Liu, Yunye
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this paper, the dynamic characteristics of a composite cylindrical beam made of a mechanism of carbon dioxide absorption coated on the tube core are investigated based on the classical beam theory coupled with the modified couple stress theory. The composite tube structures are assumed to be uniform along the tube length, and the energy method regarding the Hamilton principle is utilized for generating the governing equations. A powerful numerical solution, the generalized differential quadrature method (GDQM), is employed to solve the differential equations. The carbon dioxide trapping mechanism is a composite consisting of a polyacrylonitrile substrate and a cross-link polydimethylsiloxane gutter layer. Methacrylate, poly (ethylene glycol), methyl ether methacrylate, and three pedant methacrylates are all taken into account as potential mechanisms for capturing carbon dioxide. The application of the present study is helpful in the design and production of microelectromechanical systems (MEMS) and the different valuable parameters, such as the length-scale parameter, rate of section change, aspect ratio, etc., are presented in detail.

Development of the Efficiency-Evaluation Model for the Mechanism of CO2 Sequestration in a Deep Saline Aquifer (심부 대염수층 CO2 격리 메커니즘에 관한 효율성 평가 모델 개발)

  • Kim, Jung-Gyun;Lee, Young-Soo;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.55-66
    • /
    • 2012
  • The practical way to minimize the greenhouse gas is to reduce the emission of carbon dioxide. For this reason, CCS(Carbon Capture and Storage) technology, which could reduce carbon dioxide emission, has risen as a realistic alternative in recent years. In addition, the researcher is recently working into ways of applying CCS technologies with deep saline aquifer. In this study, the evaluation model on the feasibility of $CO_2$ sequestration in the deep saline aquifer using ANN(Artificial Neural Network) was developed. In order to develop the efficiency-evaluation model, basic model was created in the deep saline aquifer and sensitivity analysis was performed for the aquifer characteristics by utilizing the commercial simulator of GEM. Based on the sensitivity analysis, the factors and ranges affecting $CO_2$ sequestration in the deep saline aquifer were chosen. The result from ANN training scenario were confirmed $CO_2$ sequestration by solubility trapping and residual trapping mechanism. The result from ANN model evaluation indicated there is the increase of correlation coefficient up to 0.99. It has been confirmed that the developed model can be utilized in feasibility of $CO_2$ sequestration at deep saline aquifer.

A New Gas-Chromatograghic Method of Organic Elemental Analysis (가스크로마토그래피에 依한 微量元素分析)

  • Kim, You-Sun;Son, Youn-Soo;Choi, Q.Won
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.188-191
    • /
    • 1964
  • A new gas-chromatographic method for determining carbon and hydrogen in organic compounds has been developed. After sample combustion was performed in a regular analytical combustion tube with an internal oxidant (a mixture of silver oxide and manganese dioxide) under a helium flow, the water produced was converted to acetylene by passing through a calcium carbide tube. The carbon dioxide and acetylene were trapped by a molecular sieve 5A column at room temperature. The trapped gases were released under programmed temperature raise up to $340^{\circ}C$ and the released gases were passed through a silica gel column. The adsorption of $CO_2$ and $C_2H_2$ in the molecular sieve 5A trapping column were found to be quantitative and the silica gel column showed an excellent resolution of $CO_2$ and $C_2H_2$ for analytical purpose. The analytical results for various known compounds based on the out-put of the thermal conductivity cell calibrated for the amounts of carbon and hydrogen contents in benzoic acid, showed average errors ${\pm}0.5%$ and ${\pm}0.33%$ for carbon and hydrogen, respectively.

  • PDF

Observation of nano powders and fly ash usage effects on the fluidity features of grouts

  • Celik, Fatih;Yildiz, Oguzhan;Bozkir, Samet M.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.13-28
    • /
    • 2022
  • The pumpability of the grouts is significant issue in concept of the rheological and workability properties during penetrating to voids and cracks. To improve the fluidity features of the grout mixes, the usage of Colloidal Nano Particular Powders (CNPPs) with mineral additives such as fly ash (FA) can contribute. Therefore, the main purpose of this study can be explained as investigating the usage effects of four types of Colloidal Nano Particular Powders (n-TiO2, n-ZnO, n-Al2O3 and n-SiO2) as nano additives on the rheological, workability and bleeding properties of cement-based grout incorporated with fly as. Test results showed that the usage of FA in the grout samples positively contribute to increase on the fluidity of the grout samples as expected. The dilatant behavior was observed from the results for all mixes. Observing the effect of nano-sized additives in such cement-based grout mixtures with high fluidity has presented remarkable effects in this study.

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea (포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.

International Rule for Environment and International Trade (국제환경규범(國際環境規範)과 무역연계(貿易連繫))

  • Shin, Han-Dong
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.12
    • /
    • pp.587-613
    • /
    • 1999
  • Environmental problems such as global climate change, depletion, ocean and air pollution, and resource degradation-compounded by an expanding world population-respect no border and threaten the health, prosperity and jobs of all mankind. Our efforts to promote democracy, free trade, and stability in the world will fall short unless people have a livable environment. We have an enormous stake in the management of the world's resources. By increasing demand for timber, natural gas, coal and consumer's goods have destroyed the grounds for living. Greenhouse gas emissions anywhere in the world have threatened coastal communities, and then changed the Earth's climate system. The burning of coal, oil, and other fossil fuels is increasing substantially the concentration of heat-trapping gasses such as carbon dioxide, methane, and nitrous oxide in our air. The earth's temperature and sea levels are rising as a result. Since 1972 there has been a marked growth in the number and scope of environmental treaties. In particular, after the 1992 Rio Conference, international legal instruments became more concentrated on addressing environment within the context of sustainable development and incorporated a number of new concepts and innovative approaches. A preliminary analysis of recent conventions and in particular those associated with the Rio Conference indicates various ideas, concepts and principles which have come to the fore including sustainable development, equity, common concern of humankind, common but differentiated responsibilities and global partnership. However, international trade also has an environmental impact which must be minimized or countered. Positive measures are to be preferred to achieve environmental goals, but where trade provisions are necessary, they should be appropriately used within environmental conventions to facilitate the reduction and limitation of the negative impacts of trade and to enhance the complementarity of the multilateral trade regime with the imperatives of environmental protection, in the interests of environmental protection and sustainable development generally. The international community has to recognize and endorse this need to achieve complementarity between trade and environment issues.

  • PDF

A Review on Microbialites: a Korean Perspective (미생물암에 대하여: 한국적 관점)

  • Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.291-305
    • /
    • 2015
  • Microbialites are defined as rocks formed by microbial organisms. After their first appearance around 3.5 billion years ago, microbialites occur in various depositional environments throughout geological periods. Microbial organisms form microbialites by trapping and binding detrital sediments and/or precipitating carbonate cements, resulting in formation of various microstructures and mesostructures. Four major types of microbialites are distinguished based on their mesostructures: stromatolite, thrombolite, dendrolite, and leiolite. In the geological records, occurrences of microbialites are influenced by calcium carbonate saturation of seawater and interaction of microbialites with metazoans. Stromatolites mainly flourished during the Precambrian, and diminished as level of atmospheric carbon dioxide declined. On the other hand, thrombolites, mainly formed by calcified microbes, began to flourish from the Neoproterozoic. As metazoans diversified in the Phanerozoic, proportion of the microbialites within sedimentary record declined. Since then, microbialites only occasionally flourished during the Phanerozoic, such as shortly after mass-extinction events. In the Korean Peninsula, microbialites occur in the Neoproterozoic Sangwon System, the Early Paleozoic Joseon Supergroup, and the Cretaceous Gyeongsang Supergroup, which form different shapes according to their age and depositional environments. By performing detailed studies on these Korean microbialites, it is possible to understand how microbes affected geological records and sedimentary environments, as well as their interaction with other organisms.