• Title/Summary/Keyword: carbon dioxide production

Search Result 492, Processing Time 0.03 seconds

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.

Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide

  • Shim, Jae-Goo;Lee, Dong Woog;Lee, Ji Hyun;Kwak, No-Sang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • Global warming due to greenhouse gases is an issue of great concern today. Fossil fuel power plants, especially coal-fired thermal power plants, are a major source of carbon dioxide emission. In this work, carbon capture and utilization using sodium hydroxide was studied experimentally. Application for flue gas of a coal-fired power plant is considered. Carbon dioxide, reacting with an aqueous solution of sodium hydroxide, could be converted to sodium bicarbonate ($NaHCO_3$). A bench-scale unit of a reactor system was designed for this experiment. The capture scale of the reactor system was 2 kg of carbon dioxide per day. The detailed operational condition could be determined. The purity of produced sodium bicarbonate was above 97% and the absorption rate of $CO_2$ was above 95% through the experiment using this reactor system. The results obtained in this experiment contain useful information for the construction and operation of a commercial-scale plant. Through this experiment, the possibility of carbon capture for coal power plants using sodium hydroxide could be confirmed.

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases (재조합 탄산무수화 효소 첨가 생산배지를 이용한 Actinobacillus succinogenes 유래의 숙신산 생산성 향상)

  • Park, Sang-Min;Eum, Kyuri;Kim, Sangyong;Jeong, Yong-Seob;Lee, Dohoon;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.

Study of Producing Natural Gas From Gas Hydrate With Industrial Flue Gas (산업용 배기가스를 이용한 가스 하이드레이트로부터의 천연가스 생산 연구)

  • Seo, Yu-Taek;Kang, Seong-Pil;Lee, Jae-Goo;Cha, Min-Jun;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.188-191
    • /
    • 2008
  • There have been many methods for producing natural gas from gas hydrate reservoirs in permafrost and sea floor sediments. It is well knownthat the depressurization should be a best option for Class 1 gas hydrate deposit, which is composed of tow layers: hydrate bearing layer and an underlying free gas. However many of gas hydrate reservoirs in sea floor sediments are classified as Class 2 that is composed of gas hydrate layer and mobile water, and Class 3 that is a single gas hydrate layer. The most appropriate production methods among the present methods such as thermal stimulation, inhibitor injection, and controlled oxidation are still under development with considering the gas hydrate reservoir characteristics. In East Sea of Korea, it is presumed that the thick fractured shale deposits could be Class 2 or 3, which is similar to the gas hydrate discovered offshore India. Therefore it is needed to evaluate the possible production methods for economic production of natural gas from gas hydrate reservoir. Here we would like to present the production of natural gas from gas hydrate deposit in East Sea with industrial flue gases from steel company, refineries, and other sources. The existing industrial complex in Gyeongbuk province is not far from gas hydrate reservoir of East Sea, thus the carbon dioxide in flue gas could be used to replace methane in gas hydrate. This approach is attractive due to the suggestion of natural gas productionby use of industrial flue gas, which contribute to the reduction of carbon dioxide emission in industrial complex. As a feasibility study, we did the NMR experiments to study the replacement reaction of carbon dioxide with methane in gas hydrate cages. The in-situ NMR measurement suggeststhat 42% of methane in hydrate cages have been replaced by carbon dioxide and nitrogen in preliminary test. Further studies are presented to evaluate the replacement ratio of methane hydrate at corresponding flue gas concentration.

  • PDF

CO$_2$ Conversion to Methane using Bio-hydrogen (바이오 수소를 이용한 이산화탄소의 메탄 전환 연구)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Choi, Kwang-Keun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.933-938
    • /
    • 2008
  • In the present study, carbon dioxide was converted to methane, using bio-hydrogen. Here, the bio-hydrogen was produced from organic waste. The anaerobic microorganism was cultured using only carbon dioxide and hydrogen for duration of 3 months. Therefore methane was not produced with acetogenotrophs. During methane production, carbon dioxide and hydrogen are taken in different ratios; among which 1 : 5 ratio has shown the highest methane yield. Carbon dioxide and hydrogen were introduced into the reactor at the rate of 8 mL/min and 40 mL/min, respectively. In this case, 92% of carbon dioxide was reduced and 2.2 m$^3$/m$^3$ day amount of methane was produced. Thus, the process has been successful in conversion of carbon dioxide into methane by purging it into methane fermentation reactor with bio-hydrogen using batch process.

Concurrent Production of Methanol and Dimethyl Ether from Carbon Dioxide Hydrogenation : Investgation of Reaction Conditions

  • 전기원;신원제;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.993-998
    • /
    • 1999
  • The concurrent production of methanol and dimethyl ether from carbon dioxide hydrogenation has been studied under various reaction conditions. First, the methanol synthesis was compared with the concurrent production method. For the methanol synthesis, the ternary mixed oxide catalyst (CuO/ZnO/Al2O3) was used and for the coproduction of methanol and dimethyl ether, silica-alumina was mixed with the methanol synthesis catalyst to be a hybrid catalyst. The results show that the co-production provides much higher per-pass yield than methanol synthesis even at very short contact time. The effects of temperature, contact time, pressure and catalyst hybrid ratio on the product yields and selectivities were also determined in the co-production.

Degradation of Ethylene by a Biofilter (Biofiter를 이용한 에틸렌 분해)

  • 김종오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • The objective of this study was to investigate the biodegradation of ethylene in an biofilter inoculated with ethylene-oxidizing microorganisms. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving the ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. It was found that carbon dioxide was produced at a rate of 87 mg/day, which corresponded to a volume of 0.05 L/day. Observable features of the ethylene-oxidizing microorganisms, meaning microbial activity occurrence in the biofilter, were investigated with the microscopy analysis.

  • PDF

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.

Electrochemical Reduction of Carbon Dioxide Using a Proton Exchange Membrane (양이온 교환막을 이용한 이산화탄소의 전기화학적 환원)

  • Kim, Hak-Yoon;Ahn, Sang Hyun;Hwang, Seung Jun;Yoo, Sung Jong;Han, Jonghee;Kim, Jihyun;Kim, Soo-Kil;Jang, Jong Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.216-221
    • /
    • 2012
  • Electrochemical reduction of carbon dioxide has been widely studied by many scientists and researchers. Recently, the production of formic acid, which is expensive but highly useful liquid material, is receiving a great attention. However, difficulties in the electrochemical reduction process and analyzing methods impede the researches. Therefore, it is important to design an adequate system, develop the reduction process and establish the analyzing methods for carbon dioxide reduction to formic acid. In this study, the production of formic acid through electrochemical reduction of carbon dioxide was performed and concentration of the product has been analyzed. Large scale batch cell with proton exchange membrane was used in the experiment. The electrochemical experiment has been performed using a series of metal catalysts. Linear sweep voltammetry (LSV) and chronoamperometry were performed for carbon dioxide reduction and electrochemical analysis using silver chloride and platinum electrode as a reference electrode and counter electrode, respectively. The concentration of formic acid generated from the reduction was monitored using high performance liquid chromatography (HPLC). The results validate the appropriateness and effectiveness of the designed system and analyzing tool.

An Experimental Guide to Predictable Fuel Cell Operations by Controlling External Gas Supply (외부 유입 가스 조절을 통한 연료전지 구동 성능 안정화)

  • Jang, Hansaem;Park, Youngeun;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.626-629
    • /
    • 2018
  • Fuel cell is one of the promising electrochemical technologies enabling power production with various fuel sources such as hydrogen, hydrocarbon and even solid carbon. However, its long-term performance is often unstable and unpredictable. In this work, we observed that gasification-driven hydrocarbons were the culprit of unpredictability. Therefore, we controlled the presence of hydrocarbons with the help of external gas supply, i.e. argon and carbon dioxide, and suggested the optimal amount of carbon dioxide required for predictable fuel cell operations. Our optimization strategy was based upon the following observations; carbon dioxide can work as both an inert gas and a fuel precursor, depending on its amount present in the reactor. When deficient, the carbon dioxide cannot fully promote the reverse Boudouard reaction that produces carbon monoxide fuel. When overly present, the carbon dioxide works as an inert gas that causes fuel loss. In addition, the excessive carbon monoxide may result in coking on the catalyst surface, leading to the decrease in the power performance.