• Title/Summary/Keyword: carbon dioxide flux

Search Result 105, Processing Time 0.036 seconds

Heat Transfer Characteristics of Carbon Dioxide in a Inclined Helical Coil Type Heat Exchanger with Inner Diameter Tube of 4.55 mm (내경 4.55 mm의 경사진 헬리컬 코일형 열교환기내 이산화탄소의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube, which is specified as the inner diameter of 4.55 mm. The refrigerant mass fluxes were varied from 200 to $600kg/m^2s$ and the inlet pressures of gas cooler were done 7.5 to 10.0 (MPa). The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increase with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows relatively good coincidence with those predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ is well coincident with the correlation by Pitla et al. However, at the region near pseudo-critical temperature, the experiments indicate higher values than the Pitla et al. correlation.

  • PDF

Comparison of Methane Emissions by Rice Ecotype in Paddy Soil

  • Tae Hee Kim;Jisu Choi;Seo Young Oh;Seong Hwan Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.145-145
    • /
    • 2022
  • South Korea greenhouse gas emissions have increased year by year, resulting in a total emission of 727.6 million tons of CO2 eq in 2018, a 2.5% increase compared to 2017. Among them, the agricultural sector emitted 21.2 million tons of CO2 eq., accounting for 2.9% of the total. Among the greenhouse gases emitted from the agricultural sector, a particularly problematic is methane gas emitted from rice paddies. Methane is one of the important greenhouse gases with a global warming potential (GWP) that is about 21 times higher than that of carbon dioxide due to its high infrared absorption capacity despite its relatively short remaining atmospheric period. Since the pattern of methane generation varies depending on the rice variety and ecological type, research related to this is necessary for accurate emission calculation and development of reduction technology. Accordingly, a study was conducted to find out the changes in greenhouse gas emission according to rice varieties and ecology types. As for the rice eco-type cultivar, early maturing cultivar (Haedamssal) and medium-late rice cultivar (Saeilmi) were used. Haedamssal was transplanted on May 25 and June 25, and Saeilmi was transplanted on June 10 and June 25. The amount of methane generated according to the growing day showed a tendency to increase as the planting period was earlier. The difference between varieties was that Haedamssal showed higher methane production than Saeilmi. The total CH4 flux in the saeilmi was 18.7 kg·h-1(Jun 10 transplanting), 12.4 kg·h-1(Jun 25 transplanting) during rice cultivation. Lower methane emission was observed in Saeilmi than in Haedam rice. In addition, the earlier the planting period, the higher the methane emission. This study is the result of the first year of research, and it is planned to investigate the amount of greenhouse gas emission between double cropping and single cropping using wheat cultivation after harvest for each ecological type.

  • PDF

Nutrient Balance and Glucose Metabolism of Female Growing, Late Pregnant and Lactating Etawah Crossbred Goats

  • Astuti, D.A.;Sastradipradja, D.;Sutardi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1068-1075
    • /
    • 2000
  • A study involving nutrient balances and radioisotope labeling techniques was undertaken to study energy and protein metabolism, and glucose kinetics of female crossbred Etawah goats, using 12 weaned (BW $14.0{\pm}2.0kg$), 12 late pregnant (BW $27.8{\pm}1.8kg$) and 12 first lactation does (BW $25.0{\pm}5.0kg$). Each class of animal was randomly allotted into 3 dietary treatment groups R1, R2 and R3, that received 100%, 85%, and 70% of ad libitum feed. The rations offered were pellets containing 21.8% CP and 19.3 MJ GE/kg, except for the lactating does who received pellets (17.2% CP and 18.9 MJ GE/kg) and fresh Penisetum purpureum grass. Energy and nitrogen balance studies were conducted during a two-week trial. Daily heat production (HP, estimated by the carbon dioxide entry rate technique), glucose pool and flux were measured. Equations were found for metabolizable energy (ME) and protein intake (IP) requirements for growing goats: ME (MJ/d)=1.87+0.55 RE-0.001 ADG+0.044 RP $(R^2=0.89)$ and IP (g/d)=48.47+2.99 RE+0.029 ADG+0.79 RP $(R^2=0.90)$; for pregnant does: ME (MJ/d)=5.92+0.96 RE-0.002 ADG+0.003 RP $(R^2=0.99)$ and IP (g/d)=58.34+5.41 RE+0.625 ADG-0.30 RP $(R^2=0.98)$; and for lactating does: ME (MJ/d)=4.23+0.713 RE+0.003 ADG+0.006 RP+0.002 MY $(R^2=0.86)$; IP (g/d)=84.05-5.36 RE+0.055 ADG-0.16 RP+0.068 MY $(R^2=0.45)$, where RE is retained energy (MJ/d), ADG is average daily gain in weight (g/d), RP is retained protein (g/d) and MY is milk yield (ml/d). ME and IP requirements for maintenance for growing goats were 0.46 MJ/d.kg $BW^{0.75}$ and 7.43 g/d.kg $BW^{0.75}$, respectively. Values for the pregnant and lactating does were in the same order, 0.55 MJ/d.kg $BW^{0.75}$ and 11.7 g/d.kg $BW^{0.75}$, and 0.50 MJ/d.kg $BW^{0.75}$ and 10.8 g/d.kg $BW^{0.75}$, respectively. Milk protein ranged from 3.06 to 3.5% and milk fat averaged 5.2%. Glucose metabolism in Etawah crossbred female goat is active, but glucose flux is low compared to temperate ruminant breeds which may implicate its role to support production.

Modeling Study on a Circulatory Hollow-Fiber Membrane Absorber for $CO_{2}$ Separation (이산화탄소 분리를 위한 순환식 중공사 막흡수기에 관한 모델링 연구)

  • Chun, Myung-Suk;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • For several years lots of attempts have been made to establish the liquid membrane-based techniques for separations of gas mixtures especially containing carbon dioxide. A more effective system to separate $CO_{2}$ from flue gases, a circulatory hollow-fiber membrane absorber(HFMA) consisting of absorption and desorption modules with vacuum mode, has been considered in this study. Gas-liquid mass transfer has been modeled on a membrane module with non-wetted hollow-fibers in the laminar flow regime. The influence of an absorbent flow rate on the separation performance of the circulatory HFMA can be predicted quantitatively by obtaining the $CO_{2}$ concentration profile in a tube side. The system of $CO_{2}/N_{2}$ binary gas mixture has been studied using pure water as an(inert) absorbent. As the absorbent flow rate is increased, the permeation flux(i.e., defined as permeation rate/membrane contact area) also increases. The enhanced selectivity compared to the previous results, on the other hand, shows the decreasing behavior. It has been found obviously that the permeation flux depends on the variations of pressure in gas phase of desorption module. From an accurate comparison with the results of conventional flat sheet membrane module, the advantageous permeability of this circulatory HFMA can be clearly ascertained as expected. Our efforts to the theoretical model will provide the basic analysis on the circulatory HFMA technique for a better design and process.

  • PDF

Estimate of Nitrous Oxide Emission Factors from Municipal Wastewater Treatment Plants (하수처리 공정별 아산화질소(N$_2$O) 배출계수 산정)

  • Yang, Hyung-Jae;Park, Jung-Min;Kim, Min-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1281-1286
    • /
    • 2008
  • Nitrous oxide(N$_2$O) is well known as a greenhouse gas that contributes to the global warming (310 times more per molecule than carbon dioxide) and to the destruction of the ozone layer. The objective of this study is to estimate N$_2$O emission factor using an emission isolation flux chamber from municipal wastewater treatment plants. N$_2$O gas was analysed by GC/ECD with 6 port gas sampling valve. The results of this study were as follows. N$_2$O emission factor of 5-Stage process from Y wastewater treatment plants was lowest as 0.94 g-N$_2$O/kg-TN. And that of other processes were 2.65 g-N$_2$O/kg-TN for Activated sludge process, 9.30 g-N$_2$O/kg-TN for Denipho process, and 26.73 g-N$_2$O/kg-TN for Sequencing Batch Reactor process. We have known that 5-Stage process is most appropriate process to reduce greenhouse for municipal wastewater treatment plants.

Seasonal Variation of CO2 Exchange During the Barley Growing Season at a Rice-barley Double Cropping Paddy Field in Gimje, Korea (김제 벼-보리 이모작 논에서 보리재배 기간의 CO2 교환량의 계절적 변화)

  • Min, Sung-Hyun;Shim, Kyo-Moon;Kim, Yong-Seok;Hwang, Hae;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.137-145
    • /
    • 2014
  • Rice-barley double cropping system is typical in southwestern part of South Korea. However, the information of carbon dioxide ($CO_2$) exchange for barley growing season has still limited in comparison with rice. Using the eddy covariance (EC) technique, seasonal variation of $CO_2$ exchange was analyzed for the barley growing season at a rice-barley double cropping field in Gimje, Korea. The effects of environmental factors and biomass on the $CO_2$ flux also were investigated. Quality control and gap-filling of flux data were conducted before this analysis and investigation. The results indicated that $CO_2$ uptake increased rapidly at tillering stage and maximum net ecosystem exchange of $CO_2$ (NEE) occurred at the early of May, 2012 ($-11.2gCm^{-2}d^{-1}$), when the heading of barley occurred. NEE, gross primary production (GPP), and ecosystem respiration (Re) during the barley growing season were -348.0, 663.3, and $315.2gCm^{-2}$, respectively. In this study, an attempt has been made to measure NEE, GPP, and Re with the help of the EC system for the barley growing season for the first time in Korea, focusing on $CO_2$ exchange between the biosphere and the atmosphere.

Preparation and Oxygen Permeability of Nb-doped BCFN Ceramic Membrane (Nb-doped BCFN 세라믹 막의 제조 및 산소투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1,200^{\circ}C$. XRD result of membrane showed single perovskite structure. Leakage and oxygen permeation test were conducted on the membrane sealed by glass ring as a sealing material. The oxygen permeation flux increased with increasing temperature and pressure difference and maximum oxygen permeation flux was $2.3mL/min{\cdot}cm^2$ at $950^{\circ}C$ with $Po_2$ = 0.63 atm of oxygen partial pressure. The oxygen permeation in the condition of air with $CO_2$ (300 ppm) as feed stream decreased as much as only maximum 2.9% in comparison with air feed stream. It indicated $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ membrane is more stable than another membrane for carbon dioxide.

Vacuum Stripping of $CO_2$ from Aqueous MEA Solutions Using PDMS-PE Composite Membrane Contactor (MEA 수용액으로부터 PDMS-PE 복합막 접촉기를 이용한 이산화탄소 감압탈거)

  • Kim, Jeong-Hoon;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • Low-temperature carbon dioxide stripping by a vacuum membrane stripping technology was studied as a substitute for the stripping process in a conventional aqueous amine process. Composite membranes with $5{\mu}m$ thickness of PDMS (polydimethylsiloxane) dense layer on a PE (polyethylene) support layer were prepared by a casting method and used as a membrane contactor for $CO_2$ stripping. Aqueous amine solutions of 30 wt% MEA (monoethanolamine) were used as absorbents. $CO_2$ flux was examined under various operating conditions by varying the vacuum pressure (60~360 mmHg (abs.)), stripping temperature ($25{\sim}80^{\circ}C$), $CO_2$ loading (0.5~0.7). $CO_2$ stripping flux increased with increasing temperature and $CO_2$ loading as well as decreasing vacuum pressure. PDMS-PE composite membrane has stability for vacuum stripping process compared with PTFE porous membrane.

Effects of Light Quality and Intensity on the Carbon Dioxide Exchange Rate, Growth, and Morphogenesis of Grafted Pepper Transplants during Healing and Acclimatization

  • Jang, Yoonah;Mun, Boheum;Seo, Taecheol;Lee, Jungu;Oh, Sangseok;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.14-23
    • /
    • 2013
  • This study evaluated the influence of light quality and intensity during healing and acclimatization on the $CO_2$ exchange rate, growth, and morphogenesis of grafted pepper (Capsicum annuum L.) transplants, using a system for the continuous measurement of the $CO_2$ exchange rate. C. annuum L. 'Nokkwang' and 'Tantan' were used as scions and rootstocks, respectively. Before grafting, the transplants were grown for four weeks in a growth chamber with artificial light, where the temperature was set at $25/18^{\circ}C$ (light/dark period) and the light period was 14 hours $d^{-1}$. The grafted pepper transplants were then healed and acclimatized under different light quality conditions using fluorescent lamps (control) and red, blue, and red + blue light-emitting diodes (LEDs). All the transplants were irradiated for 12 hours per day, for six days, at a photosynthetic photon flux (PPF) of 50, 100, or 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The higher PPF levels increased the $CO_2$ exchange rate during the healing and acclimatization. A smaller increase in the $CO_2$ exchange rates was observed in the transplants under red LEDs. At a PPF of 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the $CO_2$ exchange rate of the transplants irradiated with red LEDs was lowest and it was 37% lower than those irradiated with fluorescent lamps. The $CO_2$ exchange rates of transplants irradiated with blue LEDs was the highest and 20% higher than those irradiated under fluorescent lamps. The graft take was not affected by the light quality. The grafted pepper transplants irradiated with red LEDs had a lower SPAD value, leaf dry weight, and dry matter content. The transplants irradiated with blue LEDs had longer shoot length and heavier stem fresh weight than those irradiated with the other treatments. Leaves irradiated with the red LED had the smallest leaf area and showed leaf epinasty. In addition, the palisade and spongy cells of the pepper leaves were dysplastic and exhibited hyperplasia. Grafted pepper transplants treated with red + blue LEDs showed similar growth and morphology to those transplants irradiated with fluorescent lamps. These results suggest that high-quality grafted pepper transplants can be obtained by healing and acclimatization under a combination of blue and red lights at a high PPF level.

Evaluation of the Burning Properties of Various Carpet Samples by using the Cone Calorimeter and Gas Toxicity Test (콘칼로리미터와 가스유해성 시험법을 이용한 카페트류의 연소특성 평가)

  • Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Jang-Won;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the burning behaviours of five different kinds of carpet samples covered with nylon, PP (polypropylene), PTT (poly(trimethylene terephthalate)), wool fabric and NW (nylon and wool) were evaluated by using the cone calorimeter having a radiant flux of 50kW/$m^2$. And the combustion gas toxicity was evaluated according to KS F 2271 test method. As a result of the cone calorimeter test (KS F ISO 5660-1), nylon carpet samples were ignited most easily. In ignition ability or initial flammability, NW carpet samples showed the highest value. In heat release rate (HRR), fire intensity, PP carpet samples were larger than any other samples. Nylon carpet samples were the highest smoke production rate, while N/W carpet samples the lowest. The following were in mass loss rates: NW > wool > nylon > PP > PTT. CO (carbon monoxide) was one of the most toxic gases released from the combustion. PTT carpet samples gave rise to the highest CO concentration, while NW carpet samples the lowest. In addition, PP carpet samples caused the highest $CO_2$ (carbon dioxide) concentration, while NW carpet samples the lowest. Toxicity of the gas produced from carpet samples was determined by the mouse stop motion, and it resulted in the fact that the combustion gas of PTT carpet samples was more toxic than that of any other samples.