• Title/Summary/Keyword: carbon dioxide evolution rate

Search Result 12, Processing Time 0.041 seconds

Application of Computer-coupled Mass Spectrometer for Continuous On-line Monitoring of Cell Growth and Growth Rate (세포증식과 증식속도의 On-line Monitoring을 위한 Computer- coupled Mass Spectrometer의 응용)

  • 남수완;최춘순;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.241-246
    • /
    • 1989
  • Continuous on-line monitoring of cell concentration and growth rate in aerobic batch fermentation process was carried out by analyzing the exhaust gas composition of tormentor with a quadrupole mass spectrometer. From the mass spectrometric analyses of major gaseous components, i.e. $N_2$, $O_2$, $CO_2$ and $H_2O$, and the material balance equations for oxygen and carbon dioxide, oxygen uptake rate (OUR) rind carbon dioxide evolution rate (CER) were instantaneously calculated using a computer (16-bit IBM PC-AT) interfaced to a quadrupole mass spectrometer. The calculated OUR and CER data were used for the estimation of cell concentration and growth rate of Candida utilis during batch culture. It was found that the cell concentration could be satisfactorily estimated from the data of OUR arid CER during the culture and this method could be successfully und for the continuous monitoring of cell growth and growth rate.

  • PDF

Continuous On-line Estimation of Cell Growth and Substrate Consumption Using a Computer-coupled Mass Spectrometer (Computer-coupled Mass Sepctrometer를 이용한 세포증식과 기질소모의 연속적 On-line추정)

  • 남수완;김정희
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.118-122
    • /
    • 1989
  • From the on-line mass spectrometric analyese of the exhaust gaseous composition of fermentor and the material balance equations for oxygen and carbon dioxide, oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) were calculate using a personal computer (IBM PC-AT) interfaced to a quadrupole mass spectromter. The calculate OUR and CER were used for the indirect estimation of cell and substrate concentrations during the batch culture of Candida utilis. For the estimation of sustrate concentration, the yield model of Pirt was applied. It was found that the cell and substrate (glucose) concentration could be ssatisfactorily estimataed and the results showed the more accurate estimations of both fermentation state variables when OUR data were used than CER data.

  • PDF

Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine

  • Butzke, C.E.;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 2011
  • The correlation between alcoholic fermentation rate, measured as carbon dioxide ($CO_2$) evolution, and the rate of hydrogen sulfide ($H_2S$) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace $H_2S$ were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; $H_2S$ was quantitatively trapped in realtime using a pre-calibrated $H_2S$ detection tube which was inserted into a fermentor gas relief port. Evolution rates for $CO_2$ and $H_2S$ as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated $H_2S$ formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of $H_2S$ when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained $CO_2$ production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the $H_2S$ formation was marginal.

Enhancement of $\beta$-D-Glucans Production by Agaricus blazei Murill by Nitrogen Supplementation

  • NA JEONG-GEOL;KIM HYUN-HAN;CHUN GIE-TAEK;CHANG YONG KEUN;LEE SANG JONG;CHUNG YEON HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1388-1391
    • /
    • 2005
  • Temporal changes of cell growth pattern and intracellular content of $\beta$-D-glucans were investigated with off-gas data in Agaricus blazei culture where glucose was intermittently fed. It was observed that the time point of carbon source depletion coincided with the point of sudden drop in the carbon dioxide evolution rate (CER), and that the sole supplementation of glucose was not enough to maintain active cell growth and glucan content. On the other hand, when yeast extract, a typical nitrogen source, was supplemented together with glucose when the CER suddenly dropped because of carbon source depletion, an active cell growth could be maintained until the end of the culture and the glucan content did not decrease with culture time, significantly enhancing glucan productivity.

Enzyme Kinetics Based Modeling of Respiration Rate for 'Fuyu' Persimmon (Diospyros kaki) Fruits (효소반응속도론에 기초한 단감의 호흡 모델에 관한 연구)

  • Ahn, Gwang-Hwan;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.580-585
    • /
    • 2004
  • Respiration of 'Fuyu' persimmon (Diospyros kaki) fruits were measured in terms of oxygen consumption rate and carbon dioxide evolution by closed system experiments at 0, 5, and $20^{\circ}C$. Enzyme kinetics-based respiration model was used to describe respiration rate as function of $O_2\;and\;CO_2$ gas concentrations $(R=V_m[O_2]/K_m+(1+[CO_2]/K_i)[O_2])$, and Arrhenius equation was applied to analyze temperature effect. $V_m\;and\;K_m$ increased, while $K_i$ decreased, with increasing temperature. $K_m\;of\;O_2$ consumption was greater than that of $CO_2$ evolution at equal temperature. Inhibitory effect of reduced $O_2$ level on $O_2$ consumption was more prominent than that on $CO_2$ evolution. Activation energy of respiration decreased with reduced $O_2$ and elevated $CO_2$ concentrations. Activation energy of $CO_2$ evolution was greater than that of $O_2$ consumption. Permeable package experiments verified respiration model parameters by showing good agreement between predicted and experimental gas concentrations in package.

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

Production of Ethylene and Carbon Dioxide in Apples during CA Stroage (사과의 CA저장 중 에틸렌 및 이산화탄소 생성)

  • 정헌식;최종욱
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • This study was carried out to investigate the production of C$_2$H$_4$ and CO$_2$, and the change of flesh firmness and peel color in 'Fuji' apples during CA storage. ACC oxidase activity was more inhibited by the low O$_2$ concentration, and the low level of internal C$_2$H$_4$ in apples was maintained under the low O$_2$ conditions during 8 months storage. Especially, the level of internal C$_2$H$_4$ in apples was maintained below 1 ppm during storage under 1% O$_2$+1% CO$_2$ at 0$^{\circ}C$, and not much changed for 7 days in air at 20$^{\circ}C$ after storage. The influence of CO$_2$ on the C$_2$H$_4$ production was dependent on the O$_2$ concentration. Increasing of CO$_2$ concentration with 3% O$_2$ decreased the C$_2$H$_4$ Production during storage, but that with 1% O$_2$increased. Internal C$_2$H$_4$ concentration and the rate of CO$_2$ evolution in apples showed the close correlation. Internal CO$_2$ concentration of apples was positively related to the rate of CO$_2$ evolution and maintained the lower level in 1% O$_2$+1% CO$_2$ than the other conditions during storage but nu different in the increment after storage. The relationship between C$_2$H$_4$ and CO$_2$ production was exhibited in CA and the short-term air stored apples, but not in the long-term air stored apples. Loss of flesh firmness and green color in apples was more less in storage condition retarded effectively the production of C$_2$H$_4$ and CO$_2$.

  • PDF

Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains

  • Nam, J.;Cantwell, Wesley;Das, Raj;Lowe, Adrian;Kalyanasundaram, Shankar
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.61-75
    • /
    • 2016
  • Climate changes brought on by human interventions have proved to be more devastating than predicted during the recent decades. Recognition of seriousness of the situation has led regulatory organisations to impose strict targets on allowable carbon dioxide emissions from automotive vehicles. As a possible solution, it has been proposed that Fibre Metal Laminate (FML) system is used to reduce the weight of future vehicles. To facilitate this investigation, FML based on steel and self-reinforced polypropylene was stamp formed into dome shapes under different blank holder forces (BHFs) at room temperature and its forming behaviour analysed. An open-die configuration was used in a hydraulic press so that a 3D photogrammetric measurement system (ARAMIS) could capture real-time surface strains. This paper presents findings on strain evolutions at different points along and at $45^{\circ}$ to fibre directions of circular FML blank, through various stages of forming. It was found initiation and rate of deformation varied with distance from the pole, that the mode of deformations range from biaxial stretching at the pole to drawing towards flange region, at decreasing magnitudes away from the pole in general. More uniform strain distribution was observed for the FML compared to that of plain steel and the most significant effects of BHF were its influence on forming depth and level of strain reached before failure.

생물공정의 측정 및 새로운 공정변수의 개발

  • Heo, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.51-52
    • /
    • 2000
  • 생물공정의 운전에 있어서 적절한 공정변수가 부족한 경우가 많다. 이것은 멸균과정을 견딜 수 있는 신뢰성 높은 센서가 부족하기 때문이다[1]. 생물공정에 주로 사용되는 센서로서는 온도, pH, D.O., rpm, viscosoty 등이 있으나 이 센서들은 배양액의 물리적 혹은 화학적 상태를 측정할 수 있는 경우가 대부분이다[2]. 미생물의 대사활동과 관련이 있는 공정 변수로는 배출가스의 성분을 측정하여 얻을 수 있는 Oxygen uptake rate, Carbon dioxide evolution rate 및 Respiratory quotient가 있으며 현재 생물공정의 운전에 사용되고 있다[3]. 그러나 반복적인 센서의 보정과 연결관의 잦은 청소 및 보수를 필요로 하여 제한적으로 사용되고있는 실정이다. 자동화된 습식분석장치, Gas chromatograph, High Performace Liquid Chromatograph 혹은 Mass spectrophtometry 등을 온라인 샘플 처리장치와 연결하여 발효조의 배양액의 성분을 온라인으로 분석하고 공정의 운전에 응용하는 사례가 많이 발표되었다[4-6]. 고가의 장비 및 운전의 번거러움이나 추가적인 인력이 필요하므로 역시 특별한 경우에만 사용되고 있다. 이외에도 여러 종류의 온라인 센서 및 바이오 센서등이 개발되어 사용되고 있으나 역시 그 사용범위는 특수한 영역에 한정되어있다. 이와 같이 새로운 센서를 개발하여 공정변수를 측정하려는 시도중의 하나가 소프트웨어 센서의 개발이다. 이 것은 공정상에서 발생하는 1차 공정변수를 이용하여 배양액의 상태 혹은 2차적인 공정 변수를 추측해내는 것이다. 대부분의 경우 기존의 공정 변수를 사용하므로 추가적인 비용이 들지 않고 소프트웨어의 형태로 구현되므로 센서의 보정과 설치 및 유지관리의 노력이 매우 적은 장점이 있다. 본 연구에서는 생물공정에서 자동제어 과정에서 발생하는 여러 가지 공정상의 제어 신호로부터 새로운 공정 변수를 얻어내고자 시도하였다. 대부분의 생물공정에서는 pH의 자동제어가 필수적인데 자동제어 과정에서 발생하는 pH 제어 신호 및 pH의 변화 응답신호를 이용하여 배지의 완충용량의 변화와 알칼리의 소비속도를 온라인으로 측정할 수 있었다. 여기에 인공지능망을 설계하여 균체의 량을 온라인으로 추정하는 방법을 개발하였다 [7].산업용 발효조의 운전 온도는 주로 냉각수의 단속적인 공급에 의하여 항상 일정하게 조절된다. 따라서 냉각수의 냉각량을 측정하면 미생물의 배양시 발생하는 대사열량을 측정할 수 있게 된다. 본 연구에서는 실험실의 발효조를 냉각수의 단속적인 공급에 의하여 자동온도 조절이 되도록 개조하고 여기에 냉각수의 유출입 지점에 온도센서를 부착하여 냉각수의 온도를 측정하고 냉각수의 공급량과 대기의 온도 등을 측정하여 대사열의 발생을 추정할 수 있었다. 동시에 이를 이용하여 유가배양시 기질을 공급하는 공정변수로 사용하였다 [8]. 생물학적인 폐수처리장치인 활성 슬러지법에서 미생물의 활성을 측정하는 방법은 아직 그다지 개발되어있지 않다. 본 연구에서는 슬러지의 주 구성원이 미생물인 점에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.

  • PDF

Effects of Physico-chemical and Microbiological Inhibitors for Odour gas Evolution in the Fermentation of Liverstock Feces (가축(家畜) 분뇨(糞尿) 발효시(醱酵時) 악취(惡臭)가스 생성억제제(生成抑制劑) 시용(施用) 효과에 관(關)한 연구(硏究))

  • Yun, Sei-Young;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.62-69
    • /
    • 1992
  • A series of laboratory experiment was conducted to find out the effects of physico-chemical, microbiological and commercial inhibitors on the odorous gas evolution in the fermentation of livestock feces. The results obtained were summarized as follows. 1. The rate and amount of evolution of gas were the highest at 7 days after incubation, thereafter gradually decreased until 24 days after incubation. 2. The rate and amount of gases were evolved in order of $CO_2>N_2O>CH_4>NH_3>N_2S$, respectively. 3. The highest amount of methane gas was evolved from the poultry feces, those of carbon dioxide and nitrous oxide were evolved from the pig feces, and that of hydrogen sulfide was dominantly evolved from the cattle feces. 4. Negative correlation were obtained between the total amounts of $NH_3$ and $CH_4$, $CO_2$ and $CH_4$, $N_2O$ and $CH_4$, $N_2O$ and $CH_4$, while positive correlations were obtained between the amounts of $CO_2$ and $N_2O$, $CO_2$ and $NH_3$, and $NH_3$ and $N_2O$, respectively. 5. There was no significantly inhibiting effect obtained that the application of commercial gas inhibitor as VK 88. On the other hand there was significantly inhibiting effect obtained when application of fertile paddy soil and photosynthetic bacteria to the fermentation of livestock feces.

  • PDF