• Title/Summary/Keyword: carbon dioxide decomposition

Search Result 117, Processing Time 0.027 seconds

Effects of Magnetite added with Metallic Oxide on the Decomposition Reaction of Carbon Dioxide (CO$_2$ 분해 반응에서 금속 산화물이 첨가된 $Fe_2O_4$의 영향)

  • Kim, Seung-Ho;Park, Young-Goo
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.32-37
    • /
    • 1998
  • The Carbon Dioxide is the gas, which causes green house effects, unusual changes in the weather, destruction of the life. Almost every nation in the world is trying to search the countermeasure to this poisonous gas. I synthesized $Fe_3O_4$ and NaOH, in order to decompose the Carbon Dioxide. Among the particles synthesizing $Fe_3O_4$, I chose the equivalent ratio 1.00 which can decompose the Carbon Dioxide best, and fixed that equivalent ratio and added the 0.005-3.00 mole percentage of NiCl$_2$ and synthesized $Fe_3O_4$. I studied the decomposition of the Carbon Dioxide and methanized reaction, by measuring its crystal structure, thermochemistrical character and specific surface area. In decomposing the Carbon Dioxide, I used oxygen-deficit Magnetite which I produced by injecting the hydrogen gas into the synthesized sample. I observed the methanization reaction by raising the temperature of sample up to 650$\circ$C and having it reacted with the hydrogen gas. The decomposition of the Carbon Dioxide was added 0.005, 0.03, 0.05 mole percentage of NiCl$_2$ was more effective than pure $Fe_3O_4$. All sample in which the decomposition of the Carbon Dioxide took place produced the methane gas.

  • PDF

The relationship between carbon dioxide, crop and food production index in Ghana: By estimating the long-run elasticities and variance decomposition

  • Sarkodie, Samuel Asumadu;Owusu, Phebe Asantewaa
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2017
  • The study estimated the relationship between carbon dioxide, crop and livestock production index in Ghana: Estimating the long-run elasticities and variance decomposition by employing a time series data spanning from 1960-2013 using both fit regression and ARDL models. There was evidence of a long-run equilibrium relationship between carbon dioxide emissions, crop production index and livestock production index. Evidence from the study shows that a 1% increase in crop production index will increase carbon dioxide emissions by 0.52%, while a 1% increase in livestock production index will increase carbon dioxide emissions by 0.81% in the long-run. There was evidence of a bidirectional causality between a crop production index and carbon dioxide emissions and a unidirectional causality exists from livestock production index to carbon dioxide emissions. Evidence from the variance decomposition shows that 37% of future fluctuations in carbon dioxide emissions are due to shocks in the crop production index while 18% of future fluctuations in carbon dioxide emissions are due to shocks in the livestock production index. Efforts towards reducing pre-production, production, transportation, processing and post-harvest losses are essential to reducing food wastage which affects Ghana's carbon footprint.

Gamma-Radiolysis of Carbon Dioxide (IV). Effect of the Addition of Alcohols on the Gamma-Radiolysis of Gaseous Carbon Dioxide$^+$

  • Jin Joon Ha;Choi Jae Ho;Pyun Hyung Chick;Choi Sang Up
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.55-59
    • /
    • 1988
  • The gaseous carbon dioxide has been irradiated with Co-60 gamma-radiation in the presence and absence of various alcohols, and the radiolysis products analyzed by gas chromatography. Experimental results indicate that no detectable amount of carbon monoxide is formed when pure carbon dioxide is irradiated. By adding small quantities of alcohols to carbon dioxide, however, considerable amount of carbon monoxide, ketones, alcohols and other organic products have been detected. By adding 0.1% of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-l-propanol, 2-butanol, and 2-methyl-2-propanol, G(CO) values obtained are 4.4, 4.5, 5.2, 4.4, 5.2, 5.0, 4.7 and 4.1, respectively. These high yields of carbon monoxide suggest that the oxidation reactions of carbon monoxide may be suppressed by scavenging oxygen atom with the alcohols. The main radiolytic decomposition reactions of the alcohols present in small quantity in carbon dioxide may be supposed to be the reactions with the oxygen atom produced by the radiolysis of carbon dioxide. The decomposition reactions seems to follow pseudo-first order kinetics with respect to the alcohols. The decomposition rate measured with 2-propanol is the fastest and that with 2-methyl-2-propanol the slowest. The mechanisms of the radiolytic decomposition reactions of the alcohols present in carbon dioxide are discussed on the basis of the experimental results of the present study.

Characteristics of Carbon Dioxide Destruction with a Plasma Torch and Effect of Additives (플라즈마 토치를 이용한 이산화탄소 분해특성과 첨가제의 영향)

  • Kim, Seong Cheon;Jeon, Jeong Hyeon;Chun, Young Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • To decompose carbon dioxide, which is a representative greenhouse gas, a plasma torch was designed and manufactured. To examine the characteristics of carbon dioxide decomposition via plasma discharge, a case wherein pure carbon dioxide was supplied and a case wherein methane and/or $TiCl_4$ were injected as additives were investigated and compared. The carbon dioxide and methane conversion rate, energy decomposition efficiency, produced gas concentration, carbon monoxide and hydrogen selectivity, carbon-black and $TiO_2$ were also investigated. The maximum carbon dioxide conversion rate was 28.9% when pure carbon dioxide was supplied; 44.6% when $TiCl_4$ was injected as am additive; and 100% percent when methane was injected as an additive. Therefore, this could be explained that the methane injection showed the highest carbon dioxide decomposition. Furthermore, the carbon-black and $TiO_2$ were compared with each commercial materials through XRD and SEM. It was found that the carbon-black that was produced in this study is similar for commercial materials. It was found that the $TiO_2$ that was produced in this study is suitable for photocatalyst and pigment because it has mixed anataze and rutile.

Hydrogen Activation and Carbon Dioxide Decomposition Using An Inorganic Recycling Resource (무기성 순환자원의 수소 활성화 및 이산화탄소 분해)

  • Park, Young-Koo;Ko, Jae-Churl;Jeon, Jae-Youl;Park, Joon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.483-490
    • /
    • 2009
  • This research was conducted to estimate the characteristics of carbon dioxide decomposition using an inorganic sludge. The inorganic sludge was composed of high amount (66.8%) of $Fe_2O_3$. Hydrogen could be reduced with 0.247, 0.433, 0.644, and 0.749 at 350, 400, 450, and $500^{\circ}C$, respectively. The carbon dioxide decomposition rates at 250, 300, 350, 400, 450, and $500^{\circ}C$ were 32, 52, 35, 62, 75, and 84%, respectively. High temperature led to high reduction of hydrogen and better decomposition of carbon dioxide. The specific surface area of the sludge after hydrogen reduction was higher than that after carbon dioxide decomposition. The specific surface area of the sludge was more decreased with increasing of temperature.

Decomposition of Carbon Dioxide using $Zn_{x}Fe_{3-x}O_{4-{\delta}}$ (($Zn_{x}Fe_{3-x}O_{4-{\delta}}$를 이용한 이산화탄소의 분해)

  • Yang, Chun-Mo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was synthesized by air oxidation method for the decomposition of carbon dioxide. We investigated the characteristics of catalyst, the form of methane by gas chromatograph after decomposition of carbon dioxide and kinetic parameter. $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was spinel type structure. The surface areas of catalysts($Zn_{x{Fe_{3-x}O_{4}(0.00.<X<0.08)$) were $15{\sim}27$ $m^{2}/g$. The shape of $Zn_{0.003}Fe_{2.997}O_{4}$ was sphere. The optimum temperature for the decomposition of carbon dioxide into carbon was $350^{\circ}C$. $Zn_{0.003}Fe_{2.997}O_{4}$ showed the 85% decomposition rate of carbon dioxide and the degree of reduction by hydrogen(${\delta}$) of $Zn_{0.003}Fe_{2.997}O_{4}$ was 0.32. At $350^{\circ}C$, the reaction rate constant and activation energy of $Zn_{0.003}Fe_{2.997}O_{3.68}$ for the decomposition of carbon dioxide into carbon were 3.10 $psi^{1-{\alpha}}/min$ and 0.98 kcal/mole respectively. After the carbon dioxide was decomposed, the carbon which was absorbed on the catalyst surface was reacted with hydrogen and it became methane.

The Decomposition of Carbon-dioxide and Methanation with Activated Magnetite (활성화 magnetite를 이용한 이산화탄소 분해와 메탄화에 관한 연구)

  • 임병오;김승호;박영구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • Magnetite was synthesized with $FeSO_4$, and NaOH for the decomposition of carbon dioxide and for the study of the methane formation. The chemical equivalent ratio was changed from 0.5 to 1.50 for the magnetite synthesis. The chemical equivalent ratio was fixed in 1.00, and Nickel chloride and Rhodium chloride equally added and synthesized with the ratio was of 0.10~10.00 mole%. The crystal strucure of the synthesized magnetite was measured XRD. Putting synthesized magnetite in the reactor and using hydrogen gas oxygen-deficient magnetite was made. Injecting carbon dioxide in the reactor, the decomposition reaction was experimented. The formation of methane was confirmed injecting hydrogen gas in the reactor after carbon dioxide was decomposed.

  • PDF

The Optimum of $CO_2$ Decomposition using Spinel Phase Magnetite (스피넬상 마그네타이트를 이용한 $CO_2$ 분해의 최적조건)

  • Ryu, Dae-Sun;Hong, Phil-Sun;Lee, Poong-Hun;Kim, Soon-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.901-907
    • /
    • 2001
  • Magnetite was synthesized using $0.2M-FeSO_4{\cdot}7H_{2}O$ and 0.5 M-NaOH by air oxidation method for carbon dioxide decomposition to carbon. The carbon dioxide decomposition was successfully carried out after reduction of ${Fe_3}{O_4}$ for 2 hrs using hydrogen gas. The carbon dioxide decomposition at 325, 350, 375, 400, $425^{\circ}C$, 88% was the highest at $350^{\circ}C$ and the activation energy of ${Fe_3}{O_4}$ in carbon dioxide decomposition was 30.96 kJ/mol. After $CO_2$ decomposition, the carbon of surface of catalyst reacted with hydrogen produced methane.

  • PDF

Activation of Spinel Phase Magnetite by Hydrogen Reduction (스피넬상 마그네타이트의 수소환원에 의한 활성화)

  • 류대선;이동석;이풍헌;김순태
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.559-563
    • /
    • 2000
  • To decompose carbon dioxide, magnetite was synthesized with 0.2M-FeSO4$.$7H2O and 0.5 M-NaOH by coprecipitation. The deoxidized magnetite was prepared from the magnetite by hydrogen reduction for 1, 1.5, 2 hr. The degree of hydrogen reduction and the decomposition rate of carbon dioxide were investigated with hydrogen reduction time. The crystal structure of the magnetite was identified spinel structute by the X-ray powder diffractions. After magnetite was reduced by hydrogen, magnetite reduced by hydrogen become new phae(${\alpha}$-Fe2O3, ${\alpha}$-Fe) and spinel type simultaneously. After decomposing of carbon dioxide at 350$^{\circ}C$, new phse(${\alpha}$-Fe2O3, ${\alpha}$-Fe) were removed and the spinel type only existed. The specific surface area of the synthesized magnetite was 46.69㎡/g. With the increase of the hydrogen reduction time, the grain size, the hydrogen reduction degree and the decomposition rate of carbon dioxide was increased.

  • PDF

Characteristics of methane reforming with carbon dioxide using transition metal catalyts (전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성)

  • Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.644-650
    • /
    • 2021
  • This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.