• 제목/요약/키워드: carbon conversion

검색결과 720건 처리시간 0.018초

이산화탄소의 전기화학적 변환 (Electrochemical Conversion of Carbon Dioxide)

  • 송지은;신운섭
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.131-141
    • /
    • 2009
  • 이산화탄소의 유용한 화합물로의 전환은 온실가스 증가로 인한 기후변화에 따른 환경문제의 해결 뿐 아니라 탄소원의 재활용이란 관점에서 무척 중요하다. 그러나 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키기 위해서는 에너지가 투입되어야 하고 효과적인 전환을 위하여 촉매의 개발 및 관련된 반응 조건의 확립이 필요하다. 본 총설에서는 그 동안 전기화학적으로 이산화탄소를 변환시킨 연구 내용들을 전극재료, 무기화합물, 효소를 이산화탄소의 환원 촉매로서 이용한 경우로 나누어 전체적으로 살펴보았다. 선택성이 좋고 효율적이며 안정성을 가진 촉매는 아직 개발되지 않은 상황이므로 앞으로 많은 연구가 진행되어야 할 분야이다.

고체 폐기물 연료 특성을 고려한 유동층 연소로의 설계/운전의 고도화 (Design and Operation of FBC Based on Characteristics of Solid Waste Fuels)

  • 최진환;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.212-219
    • /
    • 2002
  • Waste fuels, which originate from different sources, have unique combustion characteristics. The characteristics should be considered in applying FBC(fluidized bed combustor) technology to those fuels. The effects of fuel properties and operating conditions on FBC reactivity were investigated by means of carbon based parameter called mean carbon conversion time, rate of carbon conversion, fraction of carbon conversion and carbon recovery. And the basic physical and chemical mechanisms taking place in a fluidized bed were summarized. Major parameters in designing and operating FBC were evaluated in terms of the fuel properties and the combustion environment.

  • PDF

Platinum and carbon nano tube addition in carbon black counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.229-230
    • /
    • 2012
  • Platinum (Pt) has been commonly used as a counter electrode material in dye-sensitized solar cells, because it has high catalytic activity and electric conductivity as well as chemical inertness with iodide electrolyte. However, Pt is too expensive to be commercialized. Therefore, in the present study, carbon black counter electrode with Pt and carbon nano tube (CNT) was investigated. The power conversion efficiency with Pt added carbon black electrode was lower than hat of pure Pt electrode which was 6.47 %. By adding 3 wt% Pt to the carbon black counter electrode, the power conversion efficiency was maximized at 5.88 %. On them, additional adding of 1 wt % CNT, the power conversion efficiency (${\eta}$)wasincreasedupto6.21%. The reason of power conversion efficiency improvement with a proper amount of Pt and CNT was examined by comparing the impedance properties measured using EIS.

  • PDF

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Copper 촉매를 이용한 p-phenylenediamine (PPD) 합성에 관한 연구 (A Study on the Synthesis of p-phenylenediamine (PPD) Using Copper Catalyst)

  • 김정석;이상용;이정호;최원춘;강나영;박선영;김기웅;임종성;박용기;서휘민
    • Korean Chemical Engineering Research
    • /
    • 제54권3호
    • /
    • pp.425-430
    • /
    • 2016
  • 액체 암모니아와 p-diiodobenzene (PDIB)을 반응물로, Cu계 화합물을 촉매로 사용하는Aromatic amination을 이용하여 p-phenylenediamine (PPD)을 합성하였다. 촉매의 종류와 양, 환원제의 종류, 암모니아의 양, 반응 온도가 생성물의 분포에 미치는 영향을 조사하였다. Cu(I) 화합물과 Cu 분말은 촉매로서 작용한 반면 Cu(II) 화합물은 촉매로서 작용하지 않았다. 촉매의 양이 증가할수록 반응속도는 빨라지지만 부반응물인 aniline의 생성량도 증가하였다. Aniline 생성량은 또한 사용한 암모니아의 양이 증가할수록 감소하였다. 촉매 사용량을 줄이기 위해 환원제인 ascorbic acid, hydrazine, dihydroxyfumaric acid를 조촉매로 사용하면 반응속도가 크게 향상되었으나 부반응물인 aniline의 생성량 또한 증가하였다. 사용한 조촉매 중에서는 ascorbic acid와 dihydroxyfumaric acid를 사용하였을 경우가 hydrazine을 사용하였을 경우보다 반응속도가 빨랐고, dihydroxyfumaric acid를 사용하였을 경우 가장 적은 양의 aniline이 생성되었다.

백금담지 활성탄소 촉매의 요오드화수소 분해 특성 연구 (A Study on the HI Decomposition by Carbon-Supported Platinum Catalyst)

  • 박정은;김정민;강경수;김창희;김영호;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.301-308
    • /
    • 2006
  • The present work explores the effect of carbon-supported platinum catalyst on the HI decomposition using gas adsorption analyzer, thermogravimetry, X-ray diffractometry, scanning electron microscopy, and gas chromatography. For this purpose, three types of activated carbon (C), Pt/C-1 wt.%, and Pt/C-5 wt.% were prepared. The HI gas conversion is crucially influenced by the amount of Pt on the carbon support. The more the amount of Pt was, the higher results in the HI gas conversion. For three types of catalysts, HI conversion increased with increasing the decomposition temperature but with decreasing the space velocity. The increase of HI conversion with temperature was more pronounced in activated carbon than that in Pt/C. From EDX result, it was found that the activated carbon comprised higher amount of iodine than the Pt/C after the decomposition reaction. This implies that the HI conversion is closely related to the amount of Iodine.

미분탄 입자들의 배열에 따른 연소특성 (Combustion Characteristics of Coal Particle Array)

  • 조종표;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.117-123
    • /
    • 2004
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 3 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increases due to flow acceleration. When the vertical particle spacing is smaller than $6R_{o}$, volatile release and carbon conversion ratio of the second particle decrease greatly due to reduction of flame penetration depth.

  • PDF

Oxidation Kinetics of Pitch Based Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.121-126
    • /
    • 2008
  • High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of $800-1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

부탄의 직접분해로부터 수소 생산을 위한 카본블랙의 촉매적 작용 (Catalysis of carbon black for hydrogen production by butane decomposition reaction)

  • 윤석훈;한기보;박노국;류시옥;윤기준;한귀영;이태진
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.70-77
    • /
    • 2006
  • The butane decomposition over the catalyst is an attractive method for the hydrogen production. The objective of the work was investigated the catalysis of carbon black in butane decomposition reaction. The Butane decomposition was performed over carbon black catalyst in a range of $500-1100^{\circ}C$. The butane conversion of thermal decomposition and catalytic decomposition were increased with increasing the reaction temperature The butane conversion of the thermal decomposition was higher than the butane conversion of the catalytic decomposition. Hydrogen and methane were mostly observed in the butane decomposition over $1000^{\circ}C$. Especially, the hydrogen yield was steadily increased with raising the reaction temperature, It could be known that the hydrogen yield of the catalytic decomposition was higher than one of the thermal cracking because the hydrogen productivity was improved by the catalyst. The deactivation of the catalyst was not observed in the reactivity test. The surface and crystalline of the fresh and used catalysts were characterized by TEM, BET surface area and XRD analysis, respectively. The fresh carbon black particles had mostly smoothly round-shaped surfaces. In the surface of the carbon black after the reaction, the deposited carbon was formed as the protrusion-shaped carbon and the cone-shaped. The proper peaks of carbon black appeared in XRD analysis.

  • PDF