• 제목/요약/키워드: carbon capture system

검색결과 96건 처리시간 0.028초

탄소포집 활성 고로슬래그 모르타르의 기초특성에 관한 연구 (Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar)

  • 장봉진;김승원;송지현;박희문;주민관;박철우
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.95-103
    • /
    • 2013
  • PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the $Ca(OH)_2$ keeps absorbing $CO_2$ in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.

염수 전기분해와 연계한 이산화탄소의 전환 공정 연구 (A Study on a Process for Conversion of Carbon Dioxide through Saline Water Electrolysis)

  • 이동욱;이지현;이정현;곽노상;이수진;심재구
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.86-92
    • /
    • 2017
  • 석탄 화력발전 연소 배가스에 포함된 이산화탄소를 염수의 전기분해를 통해 얻어진 가성소다와 반응시켜 중탄산나트륨, 염소, 수소 등을 생산하는 공정에 대하여 실험과 전산모사를 병행하였다. Bench 규모 공정을 디자인하여 가성소다에 의한 이산화탄소 전환 공정에 대하여 실험하였고 같은 공정을 공정 모델링을 통해 전산모사 하였다. 실험결과와 전산모사 결과의 비교를 통해 모델의 신뢰성을 확인하였고, 상용급 공정에 대한 모델링을 수행하였다. 상용급 공정에 대한 열 및 물질수지를 계산하였고 반응기내 온도분포와 $CO_2$ 흡수율을 도출하였다. 본 연구를 통해 온실가스 저감뿐만 아니라 $CO_2$ 전환을 통한 경제성까지 갖춘 본 공정에 대한 기술 신뢰성을 확보할 수 있을 것이다.

조리대에 급기구를 가진 주방 레인지후드의 배기 성능 (Exhaust Performance of a Kitchen Hood System with a Supply Air Slot on a Kitchen Table)

  • 성순경
    • 설비공학논문집
    • /
    • 제28권12호
    • /
    • pp.489-494
    • /
    • 2016
  • There have been many cases when an air curtain installed in the apartment could not remove the gases well, such as carbon dioxide and particles like as smoke, oils, and vapors generated during cooking to disperse pollutants into the room. This study used a numerical analysis to show how the pollutant-removing performance of the range hood is changed when the air curtain is installed front of the kitchen table. The result of this study was that when the air amount supplied by an air curtain through the slot was about 50% of the exhaust amount, the capturing efficiency of the range hood for pollutants increased 90% more than without an air curtain. Even when the amount of supplied air was small, the capturing efficiency improved markedly with the use of an upward air curtain. In case that the air flow rate of the slot was greater than 60%, the capturing efficiency decreased.

이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링 (Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery)

  • 김승혁;이종민;윤인섭
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2012
  • 전 세계적으로 주목받는 탄소 포집 및 저장 기술(CCS)은 현재 많은 연구가 이루어져서 대규모 탄소 포집이 가능한 시점에 있다. 이에 대규모 이산화탄소 포집에 적합한 저장 기술 또한 주목을 받고 있는데, 그 중 하나가 이산화탄소 원유 회수증진 공정($CO_2$-EOR)이다. 이는 이산화탄소의 지중저장은 물론 원유 회수를 증가시키므로, 환경적인 측면과 경제적인 측면을 모두 만족시킬 수 있는 방법이라고 할 수 있다. 본 연구에서는 다공성 매질인 저류층을 통과하는 원유와 이산화탄소 혼합유체의 흐름을 모델링하고, 모델링을 통해 이산화탄소 저장 및 원유 회수 증진의 효과를 보이고자 하였다. 혼합유체를 모델링하기 위해 Darcy-Muskat의 법칙으로부터 확산성, 점도 변화를 추가 고려하여 저류층 내 압력과 포화도를 계산하였고, 수치 해석적 모델링을 위해서 유한체적법(finite volume method)을 이용하였다. 그 결과, 저류층 내 원유와 물, 이산화탄소를 주입했을 경우 각 주입물질별 시간에 따른 압력과 포화도의 변화를 예측할 수 있었고, 이산화탄소 주입 방법이 물을 주입하는 방법보다 원유 회수 측면에서 더 유리한 것을 확인할 수 있었다.

매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성 (Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor)

  • 류호정;진경태;임남윤;배성렬
    • 한국수소및신에너지학회논문집
    • /
    • 제14권1호
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

MCFC 배기가스를 이용하는 순산소연소 $CO_2$ 회수형 발전시스템의 특성과 경제성 평가 (Characteristics and Economic Evaluation of a CO2-Capturing Repowering System with Oxy-Fuel Combustion for Utilizing Exhaust Gas of MCFC)

  • 박병식;이영덕;안국영;정현일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2940-2945
    • /
    • 2008
  • The scale of 2.4 MW MCFC was taken to construct a high-efficiency and economical power generation system without CO2 emission into the atmosphere for utilizing its exhaust gas. The conventional steam turbine power generation system (STGS) was evaluated and the net generated power (NGP) was estimated to be only 133 kW and the STGS is not economically feasible. A CO2-caputuring repowering system was proposed, where low temperature steam (LTS) produced at HRSG by using exhaust gas from MCFC is utilized as a main working fluid of a gas turbine, and the temperature of LTS was raised by combusting fuel in a combustor by using pure oxygen, not the air. It has been shown that NGP of the proposed system is 264 kW, and CO2 reduction amount is 608 t-CO2/y, compared to 306 t-CO2/y of STGS. The CO2 reduction cost was estimated to be negligible small, even when the costs of oxygen production and CO2 liquefaction facilities etc. were taken into account.

  • PDF

이산화탄소 변환 과정이 포함된 인공 광합성 시스템 (Artificial Photosynthesis System Containing CO2 Conversion Process)

  • 김기범
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.63-68
    • /
    • 2018
  • 본 논문은 이산화탄소 고정 과정이 포함된 인공 광합성 과정을 모사하기 위하여 지구상에 흔히 존재하는 촉매 재료를 이용해 개발한 광화학 반응 시스템(인공나뭇잎)과 시스템 에너지 포집 및 변환 능력에 대한 성능을 조사하기 위한 기초 연구 결과를 제시한다. 본 연구에서 개발한 시스템은 태양광 전지의 전면부에 산화코발트를 도핑 하여 물의 전기분해로 인한 산소 발생이 태양전지 표면에서 직접 발생하도록 하였고, 후면 기판 표면에는 이산화탄소 변환 반응을 위한 효율적인 촉매로 $MoS_2$를 도핑 하여, 전선이 없는 구조로 구성하였다. 직접 태양광 연료 변환 시스템은 약4.5%로 이산화탄소를 일산화탄소와 수소로 변환하여 지속 가능한 연료(합성가스)의 형태로 생산하며, 이는 음극에서 촉매 변환 효율이 75%이상이 될 수 있음을 의미한다. 본 연구는 물의 광분해뿐만 아니라 태양광에 의해 유도된 이산화탄소 전환 과정을 하나의 시스템에서 동시에 실현하여 자연적 광합성 과정을 좀 더 성공적으로 모사할 수 있는 시스템 개발에 기여하였다.

순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석 (Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle)

  • 이광진;최상민;김태형;서상일
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

실험실 규모의 가압 순산소 연소 시스템을 이용한 저열량 합성가스의 연소특성 분석 연구 (Investigation of Combustion Characteristics of Low Calorific Value Syn-gas Using Lab-scale Pressurized Oxy-Combustion System)

  • 김동희;이영재;양원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.65-68
    • /
    • 2015
  • Agreeable to the latest enviromental problem, CCS(Carbon Capture&Storage) technology is more significant. As these issues, Oxy-Combustion is one of the technology that realize the CCS technology and large scale field test proceeding at other places. The aims of this research were to evaluate the combustion characteristics of pressurized oxy-combusition that is attract attention as the next generation power plant. The experiments were conducted using a laboratory-scale pressuized oxy-combustor. The fuel used was low calorific value syn-gas that is mainly composed of CO(60%), $H_2$(27%). The burner was used co-axial burner, to investigate combustion characteristics, temperature in the reactor and the flue gas compositions were measured.

  • PDF