• Title/Summary/Keyword: carbide phase

Search Result 262, Processing Time 0.036 seconds

Additive Effects on Sintering of Si/SiC Mixtures (Si/SiC 혼합물의 소결특성에 미치는 첨가제의 영향)

  • Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Kim, Jong Il;Lee, Yoon Joo;Lee, Hyun Jae;Oh, Sea Cheon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.701-705
    • /
    • 2012
  • The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at $1,350^{\circ}C$ and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

Phase Distribution and Interface Chemistry by Solid State SiC/Ni Reaction

  • Lim, Chang-Sung;Shim, Kwang-Bo;Shin, Dong-Woo;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The phase distribution and interface chemistry by the solid-state reaction between SiC and nickel were studied at temperatures between $550 \;and\; 1250^{\circ}C$ for 0.5-100 h. The reaction with the formation of silicides and carbon was first observed above $650^{\circ}C$. At $750^{\circ}C$, as the reaction proceeded, the initially, formed $Ni_3Si_2$ layer was converted to $Ni_2$Si. The thin nickel film reacted completely with SiC after annealing at $950^{\circ}C$ for 2 h. The thermodynamically stable $Ni_2$Si is the only obsrved silicide in the reaction zone up to $1050^{\circ}C$. The formation of $Ni_2$Si layers with carbon precipitates alternated periodically with the carbon free layers. At temperatures between $950^{\circ}C$ and $1050^{\circ}C$, the typical layer sequences in the reaction zone is determined by quantitative microanalysis to be $SiC/Ni_2$$Si+C/Ni_2$$Si/Ni_2$$Si+C/…Ni_2$Si/Ni(Si)/Ni. The mechanism of the periodic band structure formation with the carbon precipitation behaviour was discussed in terms of reaction kinetics and thermodynamic considerations. The reaction kinetics is proposed to estimate the effective reaction constant from the parabolic growth of the reaction zone.

  • PDF

Effect of Oxygen Injection on Microstructure and Mechanical Properties of Ni-based Superalloy Recycled by AOD Process (AOD공정으로 재활용된 니켈합금의 산소주입량에 따른 조직과 기계적 성질 변화)

  • Lee, Duk-Hee;Woo, Kee-Do;Kang, Whang-Jin;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.10-16
    • /
    • 2016
  • In this study, the Ni base superalloy was recycled by Argon oxygen decarburization(AOD) process using an inconel 713C scrap. During AOD process, argon gas was continuously injected 1,000 sccm and oxygen gas was injected into 10, 20 and 30 minutes of 100, 250 and 500 sccm.. In early stage of oxygen injection, the oxygen dose increased with increasing Al, Cr, and Mo content and decreasing C content. And Al content was decreased by carburization with added elements in late stage Because of oxidation was occurred with Al, Cr etc. after the reaction of carbon has been finished. From the results, the ratio of ${\gamma}^{\prime}$ phase reduced due to decreasing of Al content for that reason Al is the main element to form the ${\gamma}^{\prime}$ phase. Also carbide reduced owing to decreasing of C content so the mechanical properties of the specimens excessively injected by excess $O_2$ gas were decreased.

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Effect of Cr/Ti/Al Elements on High Temperature Oxidation Behavior of a Ni-Based Superalloy with Thermal Exposure (고온 노출 니켈기 초내열합금 터빈 블레이드의 Cr/Ti/Al 성분이 고온 산화에 미치는 영향)

  • Byung Hak Choe;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Jae Hyun Lee;Kwang Soo Choi
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ' precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several ㎛ depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or µ phase of TCP precipitation with the high-Cr component resulting in material brittleness.

Sintered properties of silicon carbide prepared by using the alumina and yttria-coated SiC powder (알루미나 및 이트리아로 코팅된 분말을 사용하여 제조한 탄화규소의 소결물성)

  • Um, Ki-Young;Kim, Hwan;Kang, Hyun-Hee;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.645-650
    • /
    • 1998
  • Alumina- and yttria-coated SiC powder was prepared by the surface-induced precipitation method, and sintered properties of silicon carbide prepared from this powder were investigated. After a well dispersion of SiC powders in the aqueous solution of $Al_2(SO_4)_3$ and $Y_2(SO_4)_3$, the mixed precursors of aluminum hydroxide, aluminum carbonate, yttrium hydroxide, and yttrium carbonate were precipitated on the surfaces of SiC particles through the hydrolysis reaction of urea. SiC specimens with alumina and yttria exhibit, 97.8% of theoretical density after the sintering at $1900^{\circ}C$ for 2 hrs. During annealing at $2000^{\circ}C$, $\beta$longrightarrow$\alpha$ phase transformation of SiC had taken place and resulted with a rodlike microstructure. Toughness of sintered SiC was enhanced by crack deflection around the rodlike grains. In case of annealing less than that of 3 hr, the fracture toughness of SiC was slightly improved with increasing the amount of sintering aid. However, annealed specimens for a long time showed constant fracture toughness even though the amount of sintering aid increased. It is resulted that the main factor for toughening in annealed SiC for a long time is the pullout effect of rodlike grains during the propagation of cracks, and the amount of sintering aids is less effective on the fracture toughness of SiC.

  • PDF

The Effect of Recasting on the Corrosion behavior of Ni-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Ni-Cr 합금의 반복주조가 부식거동에 미치는 영향)

  • Bae, Soo-Hyun;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.355-366
    • /
    • 2006
  • The purpose of this study was to determine if repeated casting has a detrimental effect on the corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis, vickers hardness test, SEM, EDX and corrosion test were performed to determine the effects of recasting on chemical composition, microstructure, physical property, castability and corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed that major crystal phase contained nickel-chrome compounds, Nickel carbide and Chrome carbide. Microstructure analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed recasting has no effect on microstructure. EDX analysis results indicated the percentage of the main component nickel(Ni) in the specimens of the VeraBond showed a tendency to increase with recasting, but those of other components Carbon(C) showed a tendency to decrease with recasting, Chrome(Cr), Silicon(Si), Aluminium(Al) and molybdenum(Mo) showed no changes in the percentage. The percentage of the main component nickel(Ni) in the specimens of the Rexillium V showed a tendency to increase with recasting, but those of other components silicon(Si), carbon(C) and molybdenum(Mo) showed a tendency to decrease with recasting, chrome(Cr) and aluminium(Al) showed no changes in the percentage. The vickers hardness results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The castability results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The cast and recast specimens of the VeraBond and the Rexillium V showed no differences in the corrosion resistance. The results indicate that the VeraBond and the Rexillium V can be safely recast.

  • PDF

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Effects of Alloying Elements and Heat-Treatments on Abrasion Wear Behavior of High Alloyed White Cast Iron

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their abrasion wear behavior in as-cast and heat-treated conditions. The specimens were produced using a 15㎏-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides : 3%C-10%Cr-5%Mo-5%W(alloy No. 1: $M_7C_3$ and $M_6C$), 3%C -10%V-5%Mo-5%W(alloy No. 2: MC and $M_2C$) and 3%C-17%Cr-3%V(alloy No. 3: $M_7C_3$ only). A scratching type abrasion test was carried out in the states of as-cast(AS), homogenizing(AH), air-hardening(AHF) and tempering(AHFT). First of all, the as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. 1 ㎏ load was applied in order to contact the specimen with abrading wheel which was wound by 120 mesh SiC paper. The wear loss of the test piece(dimension: $50{\times}50{\times}5$ mm) was measured after one cycle of wear test and this procedure was repeated up to 8 cycles. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the alloy No.2 and highest in the alloy No.1 except for the as-cast and homogenized condition in which the alloy No.3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the alloy No.2 could be attributed to the fact that it contained primary and eutectic MC carbides, and eutectic $M_2C$ carbide with extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and austenite depending upon the type of heat-treatment. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance.

  • PDF