• Title/Summary/Keyword: caproic acid

Search Result 55, Processing Time 0.018 seconds

Studies on the Browning of Red Ginseng (홍삼(紅蔘)의 갈변(褐變)에 관(關)한 연구(硏究))

  • Kim, Dong-Youn
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.60-77
    • /
    • 1973
  • The non-enzymatic browning phenomenons of red ginseng were studied to identify these compounds which function as the factors for browning. The samples were classified into five divisions; Fresh ginseng, blanched ginseng, sun dried red ginseng, dehydrated red ginseng, and browning accelerated red ginseng respectively, and the various compounds in each of them were analyzed quantitatively and investigated the compounds which were thought to function for browning during the drying and the dehydration processes; the results were as follows. 1. The chemical compositions among five divisions did not show any difference except a) total and reducing sugars, b) total acids, c) water soluble extracts; a) and b) were decreased during the drying process, c) was decreased about 6-7% in red ginseng divisions. 2. Sixteen free amino acids; asp., thr., ser., glu., gly., ala., val., cys., met., ileu., leu., tyr., phe., lys., his., and arg, were identified in each division. Among them the arg, was extremly high. All of the essential amino acids were contained, while generally these amino acids were decreased in drying period and their rates were smaller in dehydrated red ginseng than in sun dried red ginseng. 3. Three kinds of sugars; fructose, glucose and sucrose were identified and other four kinds of unidentified sugars were seperated. The content of sucrose was 80% and all kind of sugars were generally less in red ginseng divisions than in the other two divisions. The decreasing rate of sngars was higher in the sun dried red ginseng than in the dehydrated red ginseng. Especially the decreasing rate of the reducing sugars was high as compared with that of sucrose. 4. Almost all the ascorbic acid was decomposed during the blanching whereas there could'nt be shown any change of the ascorbic acid content during the period of drying. 5. Eleven kinds of volatile acids; acetic acid, propionic acid, acrylic acid, iso-butyric acid, n-butyric acid, isovaleric acid, n-valeric acid, isoheptylic acid, n-heptylic acid, and an unknown volatile acid were identified. They showed a little decrease during the period of blanching perhaps on account of their volatility whereas they were increased in drying period. 6. Six kinds of non-volatile acids; citric acid, malic acid, ${\alpha}-ketoglutaric$ acid, succinic acid, pyruvic acid and glutaric acid were identified. The content of them were decreased during the drying procedures in red ginseng but only that of succinic acid was increased. 7. Three kinds of polyphenols; 3-caffeyl quinic acid, 4-caffeyl quinic acid, 5-caffeyl quinic acid and an unknown polyphenol were identified. The content of them showed considerable decrease during the drying procedures, especially in sun drying. 8. The intensity of the browning in each divisior was as follows; browning accelerated red ginseng> sun dried red ginseng> dehydrated red ginseng. 9. In the process of red ginseng preparation, a. certain relationship could be found between the decreasing rates of amino acids, reducing sugars, polyphenols and the intensity of browning. Therefore the browning phenomenon may be concluded that nonenzymatic browning reactions of the amino-carbonyl reaction and autoxidation of polyphenols are the most important processes, furthermore, as their reactions could be controlled it is thought to be possible to accelerate effectively browning within a relatively short period.

  • PDF

Effect of Feeding Calcium Salts of Palm Oil Fatty Acids on Performance of Lactating Crossbred Cows

  • Purushothaman, Sajith;Kumar, Anil;Tiwari, D.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.376-385
    • /
    • 2008
  • Twenty lactating crossbred cows yielding 10 to 15 litres of milk daily during mid lactation were selected and divided into four groups of five animals to assess the effect of feeding calcium soaps of palm oil fatty acids (bypass fat) on milk yield, milk composition and nutrient utilization in lactating crossbred cows. The animals in groups 1 (control), 2, 3 and 4 were fed concentrate mixture containing 0 (no bypass fat), 2, 4 and 6% bypass fat, respectively. The average daily dry matter consumption in the various groups ranged from 13.1 to 13.6 kg and showed no significant difference among treatment groups. There was no significant difference among different groups in digestibility of DM, OM, CP and CF, however, ether extract digestibility in cows of groups 2 and 4 was significantly (p<0.05) higher than the control group. The average milk yields of the cows in group 3 (4% bypass fat) showed a significantly (p<0.05) higher value than cows of groups 1 and 2. Similarly, a significant (p<0.05) increase in fat yield, 4% FCM yield and SNF yield was observed for the cows in group 3 (4% bypass fat). The milk composition in terms of total solids, fat, lactose, protein, solids-not-fat and ash percentage showed a varying response and bypass fat feeding did not have any effect on milk composition of cows in different groups. The gross and net energetic efficiency of milk production ranged from 23.6 to 27.5% and 37.1 to 44.4%, respectively, and showed no significant difference among different treatment groups. The gross and net efficiency of nitrogen utilization for milk production ranged from 24.0 to 28.7% and 37.2 to 43.5%, respectively, and no significant difference was noted among different treatment groups. The supplementation with calcium salts of palm oil fatty acid reduced the proportion of caproic, caprylic and capric acids and significantly (p<0.01) increased the concentration of palmitic, oleic, stearic, linoleic and linolenic acids in milk fat with increase in level of bypass fat supplementation. It was concluded that incorporation of calcium salts of palm oil fatty acids at a 4% level in the concentrate mixture of lactating crossbred cows improved the milk production and milk quality in terms of polyunsaturated fatty acids without affecting the digestibility of nutrients.

The Effects of Different Moisture Content and Ensiling Time on Silo Degradation of Structural Carbohydrate of Orchardgrass

  • Yahaya, M.S.;Kawai, M.;Takahashi, J.;Matsuoka, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.213-217
    • /
    • 2002
  • This study determined the influence of moisture, ensiling time and their interactions on the losses of hemicellulose and cellulose during ensiling of orchardgrass. Orchardgrass containing 80 (HM), 70 (MM) and 55% (LM) moisture was ensiled in 3 laboratory silos of 500 ml capacity for 3, 7, 21 and 91 days. The dry matter (DM), water-soluble carbohydrates (WSC), hemicellulose and cellulose contents of the ensiled orchardgrass was lowered than that of the untreated grass regardless of moisture content. Ensiling orchardgrass for 91 days (d) decreased (p<0.01) hemicellulose contents from 19 to 15%, 20 to 15% and 18 to 12% and cellulose from 31 to 29%, 29 to 26% and 27 to 26% for LM, MM and HM silage, respectively. Results from fermentation of LM and MM silages were within acceptable guidelines except for butyric acid and ammonia after 3 weeks of ensiling of MM which appeared to be lower than ideal. The results of the fermentation of HM silages were poor showing higher concentration of acetic, propionic and butyric acids and traces of isovaleric, valeric and caproic acids with ammonia at all stage of time. While the DM losses from LM and MM silages over the ensiling period were acceptable, that for HM silage increased to 13% after 91 d ensiling, confirming a poor fermentation process occurred. The greatest WSC losses occurred within 7 d of ensiling and the lowest losses occurred after 3 weeks of ensiling. Except in HM silage, the hemicellulose and cellulose losses were highest (p<0.01) in the first 3 weeks of ensiling. Hemicellulose losses were between 19 and 22% and 4.2 and 5.9% up to 3 weeks and after 3 weeks of ensiling LM and MM silages, respectively. Cellulose losses were small. In contrast, hemicellulose losses after 3 weeks of ensiling of HM silage was about 50% higher than over the first 3 weeks possibly due to clostridial type fermentation. The results showed that increasing ensiling time of high moisture orchardgrass would result in the excessive losses of DM, WSC, hemicellulose and cellulose in the silage.

Fatty acids composition and lipolysis of Parmigiano Reggiano PDO cheese: effect of the milk cooling temperature at the farm

  • Piero, Franceschi;Paolo, Formaggioni;Milena, Brasca;Giuseppe, Natrella;Michele, Faccia;Massimo, Malacarne;Andrea, Summer
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.132-143
    • /
    • 2023
  • Objective: The aim was to study the influence of cooling milk at 9℃ at the farm versus keeping it at 20℃ on Parmigiano Reggiano cheese lipolysis. Methods: A total of six cheesemaking trials (3 in winter and 3 in summer) were performed. In each trial, milk was divided continuously into two identical aliquots, one of which was kept at 9℃ (MC9) and the other at 20℃ (MC20). For each trial and milk temperature, vat milk (V-milk) and the resulting 21 month ripened cheese were analysed. Results: Fat and dry matter and fat/casein ratio were lower in MC9 V-milk (p≤0.05) than in MC20. Total bacteria, mesophilic lactic acid and psychrotrophic and lipolytic bacteria showed significant differences (p≤0.05) between the two V-milks. Regarding cheese, fat content resulted lower and crude protein higher (p≤0.05) both in outer (OZ) and in inner zone (IZ) of the MC9 cheese wheels. Concerning total fatty acids, the MC9 OZ had a lower concentration of butyric, capric (p≤0.05) and medium chain fatty acids (p≤0.05), while the MC9 IZ had lower content of butyric (p≤0.05), caproic (p≤0.01) and short chain fatty acids (p≤0.05). The levels of short chain and medium chain free fatty acids (p≤0.05) were lower and that of long chain fatty acids (p≤0.05) was higher in MC9 OZ cheese. The principal component analysis of total and free fatty acids resulted in a clear separation among samples by seasons, whereas slight differences were observed between the two different milk temperatures. Conclusion: Storing milk at 9℃ at the herd affects the chemical composition of Parmigiano Reggiano, with repercussion on lipolysis. However, the changes are not very relevant, and since the cheese can present a high variability among the different cheese factories, such changes should be considered within the "normal variations" of Parmigiano Reggiano chemical characteristics.

Study on the Manufacturing Properties of Korean-type Koumiss (한국형 Koumiss제조 특성에 관한 연구)

  • Lee, Jong-Ik;Song, Kwang-Young;Chon, Jung-Whan;Hyeon, Ji-Yeon;Seo, Kun-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.367-375
    • /
    • 2011
  • For this study, Korean-type Koumiss was made by the fermentation of mixed cultures, in which yeast, Kuyveromyces, and microflora, Streptococcus thermophiles and Lactobacillus bulgaricus, were inoculated into 10% skimmed milk with added whey powder(control: A, 2%: B, 4%: C, 6%: D, and 8%: E). Fat, protein, lactose, titratable acidity, pH, the number of lactic acid bacteria, the number of yeast, alcohol content, volatile fatty acids, volatile free amino acids and minerals were measured in the products. The results were as follows: As the dosage of whey powder increased, fat increased from 0.74% in the control to 2.30% in sample E, protein increased from 2.95% in the control to 4.39% in sample E and lactose increased from 3.10% in the control to 7.43% in sample E. Titratable acidity and pH increased gradually. The number of lactic acid bacteria increased from $10^9\;cfu/m{\ell}$ in the control to $3.8{\times}10^9\;cfu/m{\ell}$ in sample E, and the number of yeast increased from $6.1{\times}10^7\;cfu/m{\ell}$ in the control to $1.65{\times}10^8\;cfu/m{\ell}$ in sample E, according to the increase of whey powder content. For alcohol content, the average values were 0.863%, 0.967%, 0.890%, 1.290%, and 1.313% for the control and samples B, C, D, and E, respectively. As the dosage of whey powder increased, alcohol content showed a tendency to gradually increase. The average alcohol content of E was 1.313 and this was higher than the alcohol content of Kazahstana-type Koumiss with 1.08%. Sixteen types of free amino acids were detected. Glycine was the lowest in the control at $0.38mg/m{\ell}$ and sample E contained $0.64mg/m{\ell}$. Histidine was also low in the control at $0.42mg/m{\ell}$ and sample E contained $0.65mg/m{\ell}$. On the other hand, glutamic acid was highest at $4.13mg/m{\ell}$ in the control whereas sample E had $6.96mg/m{\ell}$. Proline was also high in the control at $1.71mg/m{\ell}$ in control, but E contained $2.80mg/m{\ell}$. Aspartic acid and leucine were greater in sample E than in the control. For volatile free fatty acids, content generally had a tendency to increase in the control, and samples B, C, D, and E. Content of acetic acid gradually increased from $12,661{\mu}g/100m{\ell}$ in the control to $37,140{\mu}g/m{\ell}$ in sample E. Butyric acid was not detected in the control and was measured as $1,950{\mu}g/100m{\ell}$ in sample E. Caproic acid content was $177{\mu}g/100m{\ell}$ in the control and $812{\mu}g/100m{\ell}$ in sample E, and it increased according to the increase of whey powder content. Valeric acid was measured in a small amount in the control as $22{\mu}g/100m{\ell}$, but it was not detected in any other case. Mineral contents of Ca, P, and Mg increased from 1,042.38 ppm, 863.61 ppm, and 101.28 ppm in the control to 1,535.12 ppm, 1,336.71 ppm, and 162.44 ppm in sample E, respectively. Na content was increased from 447.19 ppm in the control to 1,001.57 ppm in sample E. The content of K was increased from 1,266.39 ppm in the control to 2,613.93 ppm in E. Mineral content also increased with whey powder content. In sensory evaluations, the scores increased as whey powder content increased. Flavor was lowest in the control with 6.3 points and highest in E with 8.2 points. Body and texture were highest at 4.2 points in the control, which did not have added whey powder. In the case of appearance, there were no great differences among the samples.