Browse > Article
http://dx.doi.org/10.5713/ajas.2008.60505

Effect of Feeding Calcium Salts of Palm Oil Fatty Acids on Performance of Lactating Crossbred Cows  

Purushothaman, Sajith (Tinna Oils & Chemicals Ltd.)
Kumar, Anil (Department of Animal Nutrition, College of Veterinary & Animal Sciences Govind Ballabh Pant University of Agriculture and Technology)
Tiwari, D.P. (Department of Animal Nutrition, College of Veterinary & Animal Sciences)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.3, 2008 , pp. 376-385 More about this Journal
Abstract
Twenty lactating crossbred cows yielding 10 to 15 litres of milk daily during mid lactation were selected and divided into four groups of five animals to assess the effect of feeding calcium soaps of palm oil fatty acids (bypass fat) on milk yield, milk composition and nutrient utilization in lactating crossbred cows. The animals in groups 1 (control), 2, 3 and 4 were fed concentrate mixture containing 0 (no bypass fat), 2, 4 and 6% bypass fat, respectively. The average daily dry matter consumption in the various groups ranged from 13.1 to 13.6 kg and showed no significant difference among treatment groups. There was no significant difference among different groups in digestibility of DM, OM, CP and CF, however, ether extract digestibility in cows of groups 2 and 4 was significantly (p<0.05) higher than the control group. The average milk yields of the cows in group 3 (4% bypass fat) showed a significantly (p<0.05) higher value than cows of groups 1 and 2. Similarly, a significant (p<0.05) increase in fat yield, 4% FCM yield and SNF yield was observed for the cows in group 3 (4% bypass fat). The milk composition in terms of total solids, fat, lactose, protein, solids-not-fat and ash percentage showed a varying response and bypass fat feeding did not have any effect on milk composition of cows in different groups. The gross and net energetic efficiency of milk production ranged from 23.6 to 27.5% and 37.1 to 44.4%, respectively, and showed no significant difference among different treatment groups. The gross and net efficiency of nitrogen utilization for milk production ranged from 24.0 to 28.7% and 37.2 to 43.5%, respectively, and no significant difference was noted among different treatment groups. The supplementation with calcium salts of palm oil fatty acid reduced the proportion of caproic, caprylic and capric acids and significantly (p<0.01) increased the concentration of palmitic, oleic, stearic, linoleic and linolenic acids in milk fat with increase in level of bypass fat supplementation. It was concluded that incorporation of calcium salts of palm oil fatty acids at a 4% level in the concentrate mixture of lactating crossbred cows improved the milk production and milk quality in terms of polyunsaturated fatty acids without affecting the digestibility of nutrients.
Keywords
Bypass Fat, Calcium Soap; Crossbred Cows; Milk CompositionMilk Yield; Nutrient Utilization; Palm Oil Fatty Acids;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Upritchard, J. E., H. J. Zeelenberg, H. Huizinga, P. H. Verschuran and E. A. Trautwein. 2005. Modern fat technology: what is the potential for heart health? Proc. Nutr. Soc. 64(3):379-386   DOI   ScienceOn
2 Shaver, R. D. 1990. Fat sources for high producing dairy cows. In: Proc 51st Minnesota Nutritional Conference St. Paul, p. 13.
3 Smith, W. A. and B. Harris. 1992. The influence of forage type on the production response of lactating dairy cows supplemented with different types of dietary fat. Proc. Anim. Sci. p. 87.
4 Solomon, R., L. E. Chase, G. Ben and D. E. Bauman. 2000. Effect of nonstructural carbohydrate and addition of full fat extruded soybeans on the concentration of conjugated linoleic acid in milk fat of dairy cows. J. Dairy Sci. 83:1322-1332.   DOI   ScienceOn
5 Tacket, V. L., J. A. Bertrand, T. C. Jenkins, F. E. Pardue and L. W. Grimes. 1996. Interaction of dietary fat and acid detergent fibre diets of lactating dairy cows. J. Dairy Sci. 79:270-275.   DOI   ScienceOn
6 Sarwar, M., M. A. Khan and Mahr-Us-Nisa. 2004. Influence of ruminally protected fat and urea treated corncobs ensiled with or without corn steep liquor on nutrient intake, digestibility, milk yield and its composition in Nili-Ravi buffaloes. Asian- Aust. J. Anim. Sci. 17:86-93.   과학기술학회마을   DOI
7 Schauff, D. J. and J. H. Clark. 1992. Effects of feeding diets containing calcium salts of long chain fatty acids to lactating dairy cows. J. Dairy Sci. 75:2990-3002.   DOI   ScienceOn
8 Schneider, P., D. Sklan, W. Chalupa and D. S. Kronfeld. 1988. Feeding calcium salts of fatty acids to lactating cows. J. Dairy Sci. 71:2143-2150.   DOI
9 Snedecor,, G. W. and W. G. Cochran. 1980. Statistical Methods (13th edn, I.B.H. Publishing Co. Calcutta) Iowa State University Pres Ames, Iowa, USA
10 Sarwar, M., A. Sohaib, M. A. Khan and Mahr-Us-Nisa. 2003. Effect of feeding saturated fat on milk production and composition in crossbred dairy cows. Asian-Aust. J. Anim. Sci. 16(2):204-210.   과학기술학회마을   DOI
11 Jerred, M. J., D. J. Carrol and D. K. Combs. 1990. Effect's of fat supplementation and immature alfalfa to concentrate ratio on lactation performance of dairy cattle. J. Dairy Sci. 73:2842- 2854.   DOI   ScienceOn
12 Chalupa, W., B. Rickabaugh, D. S. Kronfeld and D. Sklan. 1984. Rumen fermentation in vitro as influenced by long chain fatty acids. J. Dairy Sci. 67:1439-1444.   DOI   ScienceOn
13 Brzoska, F., R. Fasior, K. Sala and W. Zyzak. 1999. Effect of calcium salts of fatty acids on cow performance and milk composition, Roczniki Naukowe, Zootechniki. 26(3):143-157.
14 Canale, C. J., P. L. Burgers, L. D. Muller and G. A. Varga. 1990. Calcium salts of fatty acids in diets that differ in neutral detergent fibre (NDF): Effect on lactation performance and nutrients digestibility. J. Dairy Sci. 73:1031-1038.   DOI   ScienceOn
15 Johnson, J. C. Jr., P. R. Utley, B. G. Jr. Mullinix and A. Merrill. 1988. Effects of adding fat and lasolacid diets of diary cows. J. Dairy Sci. 71:2151-2165.   DOI
16 Gupta, P. C., V. K. Khatta and A. B. Mandal. 1992. Analytical techniques in Animal Nutrition CCS HAU, Hisar, p. 46.
17 Jenkins, T. C. and B. F. Jenny. 1989. Effect of hydrogenated fat on feed intake, nutrient digestion and lactation performance of dairy cows. J. Dairy Sci. 72:2316-2324.   DOI   ScienceOn
18 Jenkins, T. C. and D. L. Palmquist. 1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of diary rations. J. Dairy Sci. 67:978-986.   DOI   ScienceOn
19 Kronfeld, D. S. 1982. Major metabolic determinants of milk volume, mammary efficiency and spontaneous ketosis in dairy cows. J. Dairy Sci. 65:2204-2212.   DOI   ScienceOn
20 Drackley, J. K. and J. P. Elliot. 1993. Milk composition, ruminal characteristics and nutrient utilization in dairy cows fed partially hydrogenated tallow. J. Dairy Sci. 76:183-196.   DOI   ScienceOn
21 Palmquist, D. L. 1988. The feeding value of fats. In Feed Science (Ed. E. R. Skov). Elsevier Sci. p. 93. Publ A.V. Amsterdam. The Netherlands.
22 Palmquist, D. L. 1984. Use of fats in diet for lactating diary cows. Fats in animal Nutrition (Ed. J. Wiseman). Butterworth's London.
23 Pantoja, J., J. L. Firkins, M. L. Eastridge and B. L. Hull. 1996. Fatty acid digestion in lactating diary cows fed fats varying in degree of saturation and different fiber sources. J. Dairy Sci. 79:575-584.   DOI   ScienceOn
24 Maeng, W. J., J. H. Lim and S. R. Lee. 1993. Effects of calcium salts of long chain fatty acids on ruminal digestibility, microbial protein yield and lactation performance. Asian-Aust. J. Anim. Sci. 6(3):395-400   DOI
25 NRC. 1989. Nutrient Requirement of Dairy Cattle. National Academy of Sciences. National Research Council. Washington, DC.
26 Palmquist, D. L. and T. C. Jenkins. 1980. Fat in lactation ration. Review. J. Dairy Sci. 63:1-14.   DOI   ScienceOn
27 Ward, A. T., K. M. Wittenberg and R. Prizybylski. 2002. Bovine milk fatty acid profiles produced by feeding diets containing Solin, Flax and Canola. J. Dairy Sci. 85:1191-1196.   DOI   ScienceOn
28 Wonsil, B. J., J. H. Herbein and B. A. Watkins. 1994. Dietary and ruminally protected trans 18:1 fatty acids alter bovine milk lipids. J. Nutr. 124:556-565.
29 Tiwari, D. P. and B. R. Patle. 1983. Utilization of Mahua Seed cake by lactating buffaloes. Ind. J. Dairy Sci. 36:394-401.
30 Tyrell, H. F. and J. T. Reid. 1965. Prediction of energy value of cow's milk. J. Dairy Sci. 48:1215-1223.   DOI   ScienceOn
31 Filley, S. J., A. Munoz, J. E. Trei, A. J. Kutches, J. Downer and W. B. Chalupa. 1987. Digestibility of Megalac and effects on other dietary supplemented components. J. Dairy Sci. 70:221.
32 Grummer, R. R. 1988. Influence of prilled fat and calcium salt of palm oil fatty acids on ruminal fermentation and nutrient digestibility. J. Dairy Sci. 71:117-123.   DOI   ScienceOn
33 Grummer, R. R. and D. J. Carrol. 1991. Effect of dietary fat on metabolic disorders and reproductive performance of dairy cattle. Review. J. Dairy Sci. 69:3838-3852.
34 Elliot, J. P., J. K. Drackley and D. J. Weigel. 1996. Digestibility and effects of hydrogenated palm fatty acid distillate in lactating dairy cows. J. Dairy Sci. 76(6):1031-1039.
35 Eastridge, M. L. and J. L. Firkins. 1991. Feeding hydrogenated Fatty acids and tiglycerides to lactating dairy cows. J. Dairy Sci. 74:2610-2616.   DOI   ScienceOn
36 Elliot, J. P., J. K. Drackley, D. J. Schauff and E. H. Jester. 1993. Diets containing high oil corn and tallow for diary cows during early lactation. J. Dairy Sci. 76:775-789.   DOI   ScienceOn
37 Christie, W. W. 1982. A simple procedure for rapid transmethylation of glycerolipids and cholesterol esters. J. Lipid Res. 23:1072-1075.
38 De, S. 2005. Outlines of Dairy Technology. Oxford University Press. YMCA Library Building, Jai Singh Road, New Delhi 110 001. p. 441
39 Chalupa, W., B. Veechiarelli, D. Sklan and D. S. Kronfeld. 1985. Response of rumen microorganisms and lactating cows to calcium salts of long chain fatty acids. J. Dairy Sci. 68(1):110.
40 AOAC.1990. Official Methods of Analysis (15th edition) Association of Official Analytical Chemists, Washington, DC.
41 Garg, M. R. and A. K. Mehta. 1998. Effect of feeding by pass fat on feed intake, milk production and body conditions of Holstein Friesian cows. Ind. J. Anim. Nutr. 15(4):242-245.
42 King, K. R., C. R. Stockdale and T. E. Trigg. 1990. The effect of a blend of dietary Unesterifed and saturated log-chain fatty acids on the performance of dairy cows in mid lactation. Aust. J. Agric. Res. 41:129-139.   DOI
43 Lade, M. H. 2004. Comparative studies on the effect of feeding complete ration vis-a-vis conventional ration on nutrient utilization, milk yield and milk composition in crossbred cattle. M.V.Sc. thesis submitted to G.B. Pant University of Agriculture and Technology, Pantnagar.
44 Maynard, L. A., J. K. Loosli, H. F. Hintz and R. G. Warner. 1979. Animal Nutrition. 7th edn. pp 132. Tata MeGraw-Hill Publishing Company Ltd. New Delhi.
45 Klusmeyer, T. H., G. L. Lynch, J. H. Clark and D. R. Nelson. 1991. Effects of Calcium salts of fatty acids and protein source on ruminal fermentation and nutrient flow to duodenum of dairy cows. J. Dairy Sci. 74:2206-2219.   DOI   ScienceOn
46 Ravikumar, M., D. P. Tiwari and A. Kumar. 2005. Effect of undegradable dietary protein level and plane of nutrition on lactation performance in crossbred cattle. Asian-Aust. J. Anim. Sci. 18(10):1407-1413.   과학기술학회마을   DOI
47 Reddy, Y. R., N. Krishna and E. R. Rao. 2001. In vitro and in sacco evaluation of rations supplemented with varying levels of dietary bypass fat in sheep. Ind. J. Anim. Nutr. 18(3):243- 247.
48 Radostits, O. M., C. C. Gay, D. C. Blood and K. W. Hinchgliff. 2000. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. 9th Edition. Harcourt Publishers Ltd, Harcourt Place, 32 Jamestown Road, London NW1 7BX, p. 280.
49 SAS. 1989. SAS/ STAT User's Guide: Version 6. Fourth edn. SAS Institute Inc., Cary., North Carrolina.
50 Casper, D. P., D. J. Schigoethe and W. A. Eisenbeisz. 1990. Response of early lactation cows to diets that vary in ruminal degradability of carbohydrates and amount of fat. J. Dairy Sci. 73:425-444.   DOI
51 Beaulieu, A. D. and D. L. Palmquist. 1995. Differential effects of high fat diets on fatty acid compositions in milk of Jersey and Holstein cows. J. Dairy Sci. 78:1336-1344.   DOI   ScienceOn
52 Bratzler, J. W. and R. W. Swift. 1959. A comparison of nitrogen and energy determination of fresh and oven dried cattle faeces. J. Dairy Sci. 42:686.   DOI
53 Banks, W., J. L. Clapperton, A. K. Girdler and W. Steele. 1984. Effect of inclusion of different forms of dietary fatty acid on the yield and composition of cow's milk. J. Dairy Res. 51:387-395.   DOI   ScienceOn