• Title/Summary/Keyword: capping silicon

Search Result 33, Processing Time 0.021 seconds

One-Pot Synthesis of Alkyl-Terminated Silicon Nanoparticles by Solution Reduction (표면 알킬기를 갖는 실리콘 나노입자의 One-Pot 용액환원 합성)

  • Yoon, Taegyun;Cho, Mikyung;Sun, Yang-Kook;Lee, Jung Kyoo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.577-581
    • /
    • 2011
  • Silicon nanoparticles have attracted a great deal of scientific interests due to its intense photoluminescence in the visible spectral region and its potential applications in biological fluorescence maker, RGB (red, green, blue) display, photonics and photovoltaics etc. Practical applications making use of optical and physicochemical properties of Si nanoparticles requires an efficient synthetic method which allows easy modulation of their size, size distribution as well as surface functionalities etc. In this study, a one-pot solution reduction scheme is attempted to prepare alkyl-terminated Si nanoparticles (<10 nm) with Si precursors, (Octyl)$SiCl_3$ or mixture of (Octyl)$SiCl_3$ and $SiCl_4$, containing alkyl-groups using Na(naphthalide) as reducing agent. The surface capping of Si nanoparticles with octyl-groups as well as Si nanoparticle formation was achieved in one-pot reaction. The hexane soluble Si nanoparticles with octyl-termination were in the range of 2-10 nm by TEM and some oxide groups (Si-O-Si) was present on the surface by EDS/FTIR analyses. The optical properties of Si nanoparticles measured by UV-vis and PL evidenced that photoluminescent Si nanoparticles with alkyl-termination was successfully synthesized by solution reduction of alkyl-containing Si precursors in one-pot reaction.

Thermal Stable Ni-silicide Utilizing Pd Stacked Layer for nano-scale CMOSFETs (나노급 CMOSFET을 위한 Pd 적층구조를 갖는 열안정 높은 Ni-silicide)

  • Yu, Ji-Won;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.10-10
    • /
    • 2008
  • Silicide is inevitable for CMOSFETs to reduce RC delay by reducing the sheet resistance of gate and source/drain regions. Ni-silicide is a promising material which can be used for the 65nm CMOS technologies. Ni-silicide was proposed in order to make up for the weak points of Co-silicide and Ti-silicide, such as the high consumption of silicon and the line width limitation. Low resistivity NiSi can be formed at low temperature ($\sim500^{\circ}C$) with only one-step heat treat. Ni silicide also has less dependence of sheet resistance on line width and less consumption of silicon because of low resistivity NiSi phase. However, the low thermal stability of the Ni-silicide is a major problem for the post process implementation, such as metalization or ILD(inter layer dielectric) process, that is, it is crucial to prevent both the agglomeration of mono-silicide and its transformation into $NiSi_2$. To solve the thermal immune problem of Ni-silicide, various studies, such as capping layer and inter layer, have been worked. In this paper, the Ni-silicide utilizing Pd stacked layer (Pd/Ni/TiN) was studied for highly thermal immune nano-scale CMOSFETs technology. The proposed structure was compared with NiITiN structure and showed much better thermal stability than Ni/TiN.

  • PDF

Schottky Contact Application을 위한 Yb Germanides 형성 및 특성에 관한 연구

  • Na, Se-Gwon;Gang, Jun-Gu;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.399-399
    • /
    • 2013
  • Metal silicides는 Si 기반의microelectronic devices의 interconnect와 contact 물질 등에 사용하기 위하여 그 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 이 중 Rare-earth(RE) silicides는 저온에서 silicides를 형성하고, n-type Si과 낮은 Schottky Barrier contact (~0.3 eV)을 이룬다. 또한 낮은 resistivity와 Si과의 작은 lattice mismatch, 그리고 epitaxial growth의 가능성, 높은 thermal stability 등의 장점을 갖고 있다. RE silicides 중 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 n-channel schottky barrier MOSFETs의 source/drain으로 주목받고 있다. 또한 Silicon 기반의 CMOSFETs의 성능 향상 한계로 인하여 germanium 기반의 소자에 대한 연구가 이루어져 왔다. Ge 기반 FETs 제작을 위해서는 낮은 source/drain series/contact resistances의 contact을 형성해야 한다. 본 연구에서는 저접촉 저항 contact material로서 ytterbium germanide의 가능성에 대해 고찰하고자 하였다. HRTEM과 EDS를 이용하여 ytterbium germanide의 미세구조 분석과 면저항 및 Schottky Barrier Heights 등의 전기적 특성 분석을 진행하였다. Low doped n-type Ge (100) wafer를 1%의 hydrofluoric (HF) acid solution에 세정하여 native oxide layer를 제거하고, 고진공에서 RF sputtering 법을 이용하여 ytterbium 30 nm를 먼저 증착하고, 그 위에 ytterbium의 oxidation을 방지하기 위한 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, rapid thermal anneal (RTA)을 이용하여 N2 분위기에서 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium germanides를 형성하였다. Ytterbium germanide의 미세구조 분석은 transmission electron microscopy (JEM-2100F)을 이용하였다. 면 저항 측정을 위해 sulfuric acid와 hydrogen peroxide solution (H2SO4:H2O2=6:1)에서 strip을 진행하여 TiN과 unreacted Yb을 제거하였고, 4-point probe를 통하여 측정하였다. Yb germanides의 면저항은 열처리 온도 증가에 따라 감소하다 증가하는 경향을 보이고, $400{\sim}500^{\circ}C$에서 가장 작은 면저항을 나타내었다. HRTEM 분석 결과, deposition 과정에서 Yb과 Si의 intermixing이 일어나 amorphous layer가 존재하였고, 열처리 온도가 증가하면서 diffusion이 더 활발히 일어나 amorphous layer의 두께가 증가하였다. $350^{\circ}C$ 열처리 샘플에서 germanide/Ge interface에서 epitaxial 구조의 crystalline Yb germanide가 형성되었고, EDS 측정 및 diffraction pattern을 통하여 안정상인 YbGe2-X phase임을 확인하였다. 이러한 epitaxial growth는 면저항의 감소를 가져왔으며, 열처리 온도가 증가하면서 epitaxial layer가 증가하다가 고온에서 polycrystalline 구조의 Yb germanide가 형성되어 면저항의 증가를 가져왔다. Schottky Barrier Heights 측정 결과 또한 면저항 경향과 동일하게 열처리 증가에 따라 감소하다가 고온에서 다시 증가하였다.

  • PDF