• 제목/요약/키워드: capillary tube

Search Result 248, Processing Time 0.025 seconds

An experimental study on the dynamic characteristics of a residential air-conditioner with a R22 alternative refrigerant (R22 대체냉매 에어컨의 동적 특성에 대한 실험적 연구)

  • Kim, Man-Hoe
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.408-415
    • /
    • 1998
  • This study presents experimental results on the shut-down and start-up characteristics of a residential split-system air-conditioner with capillary tube, using R410A as a R22 alternative refrigerant. During shut-down, the transient characteristics are evaluated by measuring the high side and low side pressures and temperatures of the system. The dynamic behavior of the system after start-up is also investigated at the high temperature cooling test condition. All experiments are performed in psychrometric calorimeter. The cooling capacity, power consumption, dehumidification capacity and cycle characteristics after start-up are analyzed.

Development of Cooling System for Electronic Devices using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프를 이용한 전자기기 냉각에 대한 연구)

  • Kim Jong-Soo;Ha Soo-Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.436-442
    • /
    • 2005
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices. In this paper, characteristics on oscillating heat pipe according to operating conditions (environment temperature, charging ratio of working fluid, inclination) based on experimental study was investigated From the experimental results $25^{\circ}C$(environment temperature) R-141b (working fluid) $40\%$ (charging ratio) was best performace at others of inclination angle and the top heating mode of OCHP performed $80\%$ efficiency of the bottom heating mode.

On the Characteristics of the Droplet Formation from an Inkjet Nozzle Driven by a Piezoelectric Actuator (피에조 구동형 잉크젯 노즐에서의 미세 액적 형성 특성)

  • Shin, Pyung-Ho;Sung, Jae-Yong;Lee, Suk-Jong
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • The present study has focused on the characteristics of droplet formation from an inkjet nozzle driven by a piezoelectric actuator. As an operating fluid, ethylene glycol was used and the physical properties of it such as viscosity, surface tension, contact angle and shear stress were measured. During the experiments, various temperatures and driving voltages are imposed on a capillary tube. These conditions result in a proper drive condition or an overdrive condition. In case of the proper drive condition, an image processing technique is applied to measure the diameter of a single free drop. As a result, the size of droplet is increased when the driving voltage is increased from 160 V to 190 V at 25$^{\circ}C$ In the overdrive condition where temperature or driving voltage becomes higher than the proper drive condition, satellites and the misdirected jets happen.

A Study on Reduction of Refirigerant Noise in Household Refrigerator (냉장고 냉매 소음의 저감에 관한 연구)

  • Choi, Seong-Won;Hwang, Won-Gul;Sul, Seoung-Yun;Im, Hyung-Eun;Kim, Sang-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1062-1066
    • /
    • 2004
  • In this study, refrigerant noise at connection of capillary tube and evaporator is investigated. Mechanism of refrigerant noise generation is examined in side-by-side type home refrigerator with two evaporators. It is found that the refrigerant noise is generated during refrigeration room fan-off (R-fan of) for that type refrigerator. The reason is that mass flow rate gets down during R-fan of and flow pattern is changed at outlet of capillary tube. We suggest designs for reduction of refrigerant noise with horizontal double expansion device, muffler, and accumulator. To evaluate those improved designs, sound quality index is used.

  • PDF

A Study of the Micor Mechanical System by Using the Magnetic Fluid (자성유체를 개입한 Micro Mechanical System에 관한 연구)

  • Kim, Dong-Wook;Kim, Nam-Gyun;Kim, Bu-Gil;Yuhta, Toshio
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.147-153
    • /
    • 1993
  • In this paper, we studied about the micro pressure transmission system using fluid. For the investigation of feasibility of microhydraulic system, the hydraulic characteristics were examined by using the capillary tube system and the micro cylinder system that consists of a rod and a micro capillary tube. A new hydraulic micro actuator using magnetic fluid and an external magnetic field was also investigated. The results showed that our microhydraulic system has the possibility of power transmission in arbitrary directions.

  • PDF

Polyethersulfone capillary membrane 모듐의 제조와 그 특성에 관한 연구

  • 김종엽;이광현;민병렬
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.34-35
    • /
    • 1994
  • Tube-in-orifice형태의 spinneret을 제작하여, polyethersulfone을 재질로 하는 capillary membrane을 건습식방사공정을 통해 제조하였다. 기공형성계는 PVP를, 용매는 NMP/DCM을, 내부응고제는 물과 NMP의 혼합물을, 외부응고제는 냉각수를 사용하였다. 내부응고제의 NMP농도에 따른 막의 형태와 microstructure를 연구하였다. 내부응고제가 약한 응고력을 가질 때 macrovoid가 없고, 내부의 활성층이 치밀한 막을 얻을 수 있었다. PES-NMP/DCM-PVP조성(25-44/11-20)의 용액으로, 40% NMP수용액을 내부응고제로 사용하여, 막을 제조하고 이를 모듈화하여, 한외여과실험을 한 결과, MWCO 8,000인 모듈이 얻어졌으며, 이 모듈의 Flux는 1기압에서 $1.44 \times 10^{-5}m/sec$이었다.

  • PDF

A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip (랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법)

  • Han, Su-Dong;Kim, Guk-Bae;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.

An Experimental Study on the Optimization of the Performance Characteristics of a Refrigeration System Using R-600a and R-134a (R-600a 및 R-134a를 공용으로 사용한 소형 냉동사이클의 성능 특성 최적화에 대한 실험적 연구)

  • Jang, Eui-Sung;Yoon, Won-Jae;Chung, Hyun-Joon;Jung, Hae-Won;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.268-274
    • /
    • 2010
  • Because both R-134a and R-600a are used as a refrigerant of a household refrigerator in the global market, the home-appliance industry needs an optimized cycle for both refrigerants. The objective of this study is to provide the design guideline on the optimization of a refrigeration system using both refrigerants. For both refrigerants, the performance characteristics of the refrigeration system were tested by varying refrigerant charge amount, capillary tube length, suction diameter and SLHX length. The tested refrigeration system was optimized at the refrigerant charge of 60 g and the capillary tube length of 3600 mm with R-134a, and the refrigerant charge of 34 g and the capillary tube length of 3900 mm with R-600a. The COP increased from 1.63 to 1.68 for R-134a and increased from 1.37 to 1.48 for R-600a, respectively, by applying the suction diameter expansion. In addition, the COP of the R-134a and R-600a system decreased by 2.3~2.4% as the SLHX length decreased by 300 mm.