• 제목/요약/키워드: capillary lithography

검색결과 23건 처리시간 0.022초

Capillary Force Lithographic Patterning of a Thermoplastic Polymer Layer for Control of Azimuthal Anchoring in Liquid Crystal Alignment

  • Kim, Hak-Rin;Shin, Min-Soo;Bae, Kwang-Soo;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • 제9권1호
    • /
    • pp.14-19
    • /
    • 2008
  • We demonstrated the capillary force lithography (CFL) method for controlling the azimuthal anchoring energy of a liquid crystal (LC) alignment layer. When a thermoplastic polymer film is heated to over the glass transition temperature, the melted polymer is filled into the mold structure by the capillary action and the aspect ratio of the pattern is determined by the dewetting time of the CFL process. Here, the proposed method showed that the azimuthal anchoring energy of the LC alignment layer could be simply controlled by the surface relief patterns which were determined by the dewetting times during the CFL patterning.

Flow Behavior at the Embossing Stage of Nanoimprint Lithography

  • Jeong, Jun-Ho;Park, Youn-Suk;Shin, Young-Jae;Lee, Jae-Jong;Park, Kyoung-Taik
    • Fibers and Polymers
    • /
    • 제3권3호
    • /
    • pp.113-119
    • /
    • 2002
  • Nanoimprint lithography (NIL) is a nanofabrication method known to be a low cost method of fabricating nanoscale patterns as small as 6 m. This study is focused on understanding physical phenomena in the embossing of nano/micro scale structures with 100 nm minimum feature size. We present the effects of capillary force and width of stamp groove on flow behavior at the embossing stage through numerical experimentation. We also compare our numerical results with previous experimental results and discuss our results.

Analysis and Evaluation of Capillary Passive Valves in Microfluidic Systems Using a Centrifugal Force

  • Cho, Han-Sang;Kim, Ho-Young;Kang, Ji-Yoon;Kwak, Seung-Min;Kim, Tae-Song
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.155-159
    • /
    • 2004
  • This work reports the theoretical and experimental investigations of capillary bust valves to regulate liquid flow in microchannels. The theoretical analysis uses the Young-Laplace equation and geometrical considerations to predict the pressure at the edge of the valve opening. Numerical simulations are employed to calculate the meniscus shape evolution while the interface is pinned at the valve edge. Microchannels and valves are fabricated using soft lithography. A wafer-rotating system, which can adjust the driving pressure by rotational speed, induces a liquid flow. Experimentally measured valve-bursting pressure agrees with theoretical predictions.

Closed-Cell Type Barrier Ribs using Molds Prepared by Inclined UV Lithography

  • Kim, Ki-In;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.571-574
    • /
    • 2004
  • Symmetric closed-cell type barrier ribs of PDP were formed by capillary molding process using molds prepared by inclined UV lithography process. The effects of inclining angle of barrier ribs on the sintering shrinkage and luminance of panel were examined. The results indicate that the barrier ribs of inclined morphology affect the sintering shrinkage and luminance efficiency significantly.

  • PDF

2단계 모세관 리소그라피 기술을 이용한 마이크로/나노 병합구조 공정 기술 및 수학적 모델을 통한 표면 특성 분석 (Fabrication of polymer hierarchical structures by two-step temperature-directed capillary)

  • 서갑양;정훈의;이성훈;김재관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.272-274
    • /
    • 2005
  • A simple method for fabricating micro/nanoscale hierarchical structures is presented using a two-step temperature-directed capillary molding technique. This lithographic method involves a sequential application of molding process in which a uniform polymer-coated surface is molded with a patterned mold by means of capillary force above the glass transition temperature of the polymer. Using this approach, multiscale hierarchical structures for biomimetic functional surfaces can be fabricated with precise control over geometrical parameters and the wettability of a solid surface can be designed in a controllable manner.

  • PDF

Nanoscale Fluoropolymer Pattern Fabrication by Capillary Force Lithography for Selective Deposition of Copper

  • 백장미;이린;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.369-369
    • /
    • 2012
  • The present work deals with selective deposition of copper on fluoropolymers patterned silicon (111) surfaces. The pattern of fluoropolymer was fabricated by nanoimprint lithography (NIL) and plasma reactive ion etching (RIE) was used to remove the residuals layers. Copper was electrochemically deposited in bare Si regions which were not covered with fluoropolymers. The patterns of fluoropolymers and copper have been investigated by scanning electron microscopy (SEM). In this work, we used two deposition methods. One is galvanic displacement method and another is electrodeposition. Selective deposition works in both cases and it shows applicability to other materials. By optimization of the deposition conditions can be achieved therefore this process represents a simple approach for a direct high resolution patterning of silicon surfaces.

  • PDF

Barriers Ribs using Molds Prepared by Inclined UV Lithography

  • Kim, Ki-In;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.788-790
    • /
    • 2003
  • Closed-cell type barrier ribs of PDP were formed by capillary molding process using molds prepared by inclined UV lithography process. Various types of molds with different inclined angles were prepared by patterning SU-8 thick photoresist film and casting with PDMS. The ribs with various type cells were successfully formed by the process. The effects of inclined angle on the distortion of barrier ribs during sintering were investigated. The results indicated that the barrier ribs with a draft angle and dimensional change does not affect the distortion of the barrier ribs during sintering, suggesting that the closed-cell must be isotropic in sintering shrinkage.

  • PDF