• Title/Summary/Keyword: capacity prediction

Search Result 872, Processing Time 0.032 seconds

Modelling of Permeability Reduction of Soil Filters due to Clogging (흙 필터재의 폐색으로 인한 투수성 저하 모델 개발)

  • ;;Reddi, Lakshmi.N
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF

Environmental Impact Assessment in Urban Planning (도시계획과 환경영향평가)

  • Yong, Chung
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.2
    • /
    • pp.1-11
    • /
    • 1993
  • Most developing countries are experiencing rapid urbanization and the associated growth of industry and services. Cities are currently absorbing two-thirds of the total population in the developing world. Korea has about 85 percent of urban dwellers. World population will shift from being predominantly rural to predominantly urban around the turn of the century. Although cities play a key role in development process and make more than a proportionate contribution to national economic growth, especially cities are also the main catalysts of economic growth in developing countries, they can also be unhealthy, inefficient, and inequitable places to live. Most developing countries are increasingly unable to provide basic environmental infrastructure and services, whether in the megacities or in secondary urban centers. Of particular concern is the strain on natural resources brought by the increasing number of people, cars, and factories. They are generating ever greater amounts of urban wastes and emissions. They also exceed the capacity of regulatory authorities to control them and of nature to assimilate them. The environmental consequences are translated into direct negative impacts on human health, the quality of life, the productivity of the city, and the surrounding ecosystems. Environmental degradation threatens the long tenn availability and quality of natural resources critical to economic growth. Cities, with their higher and growing per capita energy use for domestic, industrial, and transport purpose also contribute a disproportionate share of the emission leading to global warming and acid rain. An important priority is to develop strategic approaches for managing the urban environment. The design of appropriate and lasting strategic responses requires first an understanding of the underlying causes of urban environmental deterioration, it is necessary that longer tenn objectives should be set for urban area to avoid irreversible ecological damage and to ensure lasting economic development. As a means to the preventive policies against the adverse effect, environmental impact assessment (EIA) serve to identify a project's possible environmental consequences early enough to allow their being taken into consideration in the decision making process for urban planning. This paper describes some considerations of EIA for urban planning-scoping, assessment process, measurement and prediction of impacts, pollution controls and supervision, and system planning for environmental preservation.

  • PDF

Empirical modeling and statistical analysis of the adsorption of reactive dye on nylon fibers (나일론섬유에 대한 반응성 염료 흡착의 실험적 모델링 및 통계적 분석)

  • Kim, Byung-Soon;Ravikumar, K.;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2006
  • A phthalocyanine reactive dye was applied to nylon fibers to study the effects of the temperature and pH on % exhaustion and fixation. In addition, appropriate predictable empirical models, relatively new approaches in dyeing process, were developed incorporating interactions effects of temperature and pH for predicting the both % exhaustion and fixation. The significance of the mathematical model developed was ascertained using Excel regression (solver) analysis module. A very high correlation coefficient was obtained ($R^2=0.9895$ for % exhaustion, $R^2=0.9932$ for fixation) for the model which shows prominent prediction capacity of the model for the unknown conditions. The predictable polynomial equations developed from the Experimental results were thoroughly analyzed by ANOVA (Analysis of Variance) statistical concepts.

Low Temperature Drying Simulation of Rough Rice (벼의 저온건조 시뮬레이션)

  • Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.351-357
    • /
    • 2009
  • This study was conducted to verify the simulation model through the drying test, and investigate effect of factors, such as temperature of drying air, airflow rate, and velocity of the airflow, on the drying. The low temperature drying simulation model was developed based on the circulation dry simulation model presented by Keum et al. (1987), and by modifying low temperature thin layer drying model, equilibrium moisture content model, latent heat of vaporization model, and crack ratio prediction model. The heat pump and experimental dryer with a capacity of 150kg were used for the test. The RMSE between the predicted and measured value was 0.27% (drying temperature), 0.15% (crack ratio), and 2.08% (relative humidity), so the relevance of the model was verified. In addition, the effect of drying temperature, airflow rate, and velocity of the airflow on the drying was examined. The experimental results showed that the crack ratio at drying temperature of $25{\sim}40^{\circ}C$ was allowable. Moreover, at below $30^{\circ}C$, variation of the crack ratio was slight, but drying time was delayed. Given these results, the drying temperature of over $30^{\circ}C$ was effective. As the airflow rate increased, required energy dramatically increased. Whereas drying rate slowly increased, so loss of drying efficiency was caused. Considering these results, the dryer needed to be designed and adjusted to lower than $30\;m^3/min{\cdot}ton$. As velocity of the airflow increased, required drying energy increased when the velocity of the airflow was over $5\;m^3$/hr, while crack ratio and drying rate showed little variation.

A Study of UMTS-WLAN Interworking Architecture for Guaranteeing QoS (QoS 보장을 위한 UMTS와 WLAN의 인터워킹 구조)

  • Kim, Hyo-Jin;Yu, Su-Jung;Lee, Jung-Kap;Song, Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.607-612
    • /
    • 2006
  • Universal Mobile Telecommunications System (UMTS) and Wireless Local Area Network (WLAN) have been developed independently. Then, many researchers have studied UMTS-WLAN interworking architecture for the efficiency. However, the transmission capacity difference of two networks causes the transmission quality degradation. Therefore, this paper proposes a UMTS-WLAN interworking architecture for Quality of Service (QoS). The proposed architecture is based on tight coupling and dynamically guarantees QoS by the mobility prediction method. The proposed architecture is simulated by ns-2. Performance experimental results show that the proposed architecture reduces the handover dropping probability comparing with the existing method and enhances the amount of receiving packets comparing with the method without guaranteeing QoS.

Rating and Lifetime Prediction of a Bridge with Maintenance (유지관리보수가 된 교량의 내하력평가 및 잔존수명 예측)

  • Seung-Ie Yang;Han-Jung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.108-115
    • /
    • 2003
  • Bridges are rated at two levels by either Load Factor Design (LFD) or Allowable Stress Design (ASD). The lower level rating is called Inventory Rating and the upper level rating is called Operating Rating. To maintain bridges effectively, there is an urgent need to assess actual bridge loading carrying capacity and to predict their remaining life from a system reliability viewpoint. The lifetime functions are introduced and explained to predict the time-dependent failure probability. The bridge studied in this paper was built 30 years ago in rural area. For this bridge, the load test and rehabilitation were conducted. The time-dependent system failure probability is predicted with or without rehabilitation. As a case study, an optional rehabilitation is suggested, and fir this rehabilitation, load rating is computed and the time-dependent system failure probability is predicted. Based on rehabilitation costs and extended service lifes, the optimal rehabilitation is suggested.

Implementation of Wireless Network Design Tool for TD-SCDMA (TD-SCDMA 무선망 설계 Tool 의 구현 방법론)

  • Jeon, Hyun-Cheol;Ryu, Jae-Hyun;Park, Sang-Jin;Kim, Jung-Chul;Ihm, Jong-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.247-250
    • /
    • 2007
  • There are three main kinds of service standards for 3G(Third-Generation) wireless communication as WCDMA, CDMA2000 and TD-SCDMA(Time Division-Synchronous Code Division Multiple Access). Compare with WCDMA and CDMA2000, TD-SCDMA system has distinguished technical characters. It is a TDD(Time Division Duplexing) based technology and deploys several advanced but in some respects complex technologies such as smart antenna, joint-detection and baton-handoff, etc. Therefore to analyze and design TD-SCDMA wireless network, it needs more efficient and systematic simulation tool. General simulation tool has so many analysis functions including path loss prediction, capacity and coverage analysis. For more suitable for TD-SCDMA, new additional technologies have to be implemented in simulation tool. Especially as the wireless network highly advancing focused on data service, it more needs to research and develop on the reliability of the simulation tool. In this paper, to give the concrete process and skill about how to implement TD-SCDMA simulation tool, we define the kinds of simulation tool and list basic analysis functions available for TD-SCDMA network design at first. And then we explain how to consider the effects of new technologies of TD-SCDMA and give the solutions about theses considerations.

  • PDF

Using Cost-Benefit Analysis for a Feasibility Study on Constructing a Storage Facility in the Small River Basin (비용편익 분석을 통한 소하천유역의 저류조 설치 타당성 분석연구)

  • Seo, Se-Deok;Lee, Seung-Wook;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.135-141
    • /
    • 2016
  • This study aims to analyze the feasibility of installing a storage facility and make recommendations based on a cost-benefit analysis regarding the installation of a storage facility capable of preventing both floods and droughts. The capacity and installation costs are specified for the storage facility necessary to prevent floods, and a cost-benefit analysis is conducted by calculating the costs and benefits for each cost or benefit factor such as loss amounts, recovery costs, and drought prevention. The information can be used as the basic data for suggesting the feasibility of installing a multipurpose storage facility capable of preventing floods and droughts simultaneously. Also, this study expects to utilize its detailed results in a number of different ways including the prediction of loss amounts from natural disasters.

A Study on Facility Criteria of Small Petrol Stations based on Quantitative Risk Assessment (정량적 위험성 평가에 기반한 간이 주유취급소 시설기준에 대한 연구)

  • Park, Wooin;Ku, Jae-Hyun;Song, Yong-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Small petrol stations have great potential for a wide distribution in metropolitan area in which the land value possesses primary installation cost of the facility. The objective of the present study is to propose appropriate facility regulations of small petrol stations in Korea that can be popularly installed in the future in terms of securing safety in addition to serviceability. The hazard analysis and damage prediction from the possible fire and explosion accidents were performed using a software, PHAST v.6.5. As essential components of the facility regulations proposed in this study, the regulations about the refueling lot, maximum capacity of underground tank, location of fixed refueling facilities, height of firewall for small petrol stations were subsequently compared with those for regular-sized petrol stations.

Concentrated Axial Loading Test for Slender Square Hollow Section Retrofitted by Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 세장한 각형강관기둥의 중심축하중실험)

  • Park, Jai Woo;Choi, Sun Kyu;Choi, Sung Mo;Song, Dong Yub;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.735-742
    • /
    • 2012
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section(SHS) strengthened with carbon fiber reinforced polymers(CFRP) sheets. 6 specimens were fabricated and the main parameters were: width-thickness ratio(b/t) and CFRP retrofitting. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity. Also, stiffness and ductility index(DI) were compared between unretrofitted specimens and retrofitted specimens. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.