• 제목/요약/키워드: capacity calculation

검색결과 741건 처리시간 0.027초

비배토 현장타설 콘크리트 말뚝의 지지력 산정에 관한 연구 (Bearing capacity Calculation of Displacement in-situ Concrete Pile)

  • 박종배;박태순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 말뚝기초 학술발표회
    • /
    • pp.65-84
    • /
    • 2000
  • Europe and US which have more restrictive regulations than Korea about the noise and vibration during construction are using Auger-cast Pile to reduce the problem relating with noise and vibration. However Auger-cast Pile has problems like difficult quality control and low bearing capacity. In Europe, Displacement in-situ concrete Pile has been used to sove that problems since 1990s, and Korea has performed the test construction in 1997 and it has been used as the real structural foundation since 1998. Test and real construction results verified that the allowable capacity of the pile(diameter = 410mm) is between 70 and 100ton. Though De Beer & Van Imps design method utilizing CPT result is used to calculate the bearing capacity of the Displacement in-situ Pile, Korea is dependant upon the SPT as the sounding test, so design method utilizing SPT result is necessary to promote the application of the pile. To find out reasonable design method using SPT result, rearing capacity of the pile constructed in sand and clay in Korea was calculated using Meyerhof, SPT-CPT translation method, Nordlund, Douglas and DM-7 method, and the calculation results were compared to the load test result. Analysis result shows that SPT-CPT translation method is more reliable than others and economical design can be possible because it considers efficiently the friction capacity of Displacement in-situ Pile.

  • PDF

Investigation of design methods in calculating the load-carrying capacity of mortise-tenon joint of timber structure

  • Hafshah Salamah;Seung Heon Lee;Thomas H.-K. Kang
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.307-323
    • /
    • 2023
  • This study compares two prominent design provisions, National Design Specification (NDS) and Eurocode 5, on load-carrying capacity calculations and failure analysis for mortise-tenon joints. Design procedures of double-shear connection from both provisions were used to calculate load-carrying capacity of mortise-tenon joints with eight different bolt sizes. From this calculation, the result was validated using finite element analysis and failure criteria models. Although both provisions share similar failure modes, their distinct calculation methods significantly influence the design load-carrying capacity values. Notably, Eurocode 5 predicts a 6% higher design load-carrying capacity for mortise-tenon joints with varying bolt diameters under horizontal loads and 14% higher under vertical loads compared to NDS. However, the results from failure criteria models indicate that NDS closely aligns with the actual load-carrying capacity. This indicates that Eurocode 5 presents a less conservative design and potentially requires fewer fasteners in the final timber connection design. This evaluation initiates the potential for the development of a wider range of timber connections, including mortise-tenon joints with wooden pegs.

표층처리공법으로 개량된 초연약지반의 지지력산정방법에 관한 연구 (A Study for Bearing Capacity Calculation Method of Very Soft Ground with Reinforced Surface)

  • 함태규;조삼덕;양기석;유승경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.303-314
    • /
    • 2010
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 49 kinds of the laboratory model tests were conducted. And the result the study suggested $\beta_s$, the stiffness coefficient to evaluate the stiffness effect of reinforcement materials. Then, it was also found that the stiffness coefficient, $\beta_s$ as the testing constant would be appropriate as high as 1.0, 1.1 and 1.5 for geotextile, geogrid and steel bar, respectively. And It was evaluated that the stiffness effect affecting reinforcement improvement effect would be reduced as the thickness of embeded depth increases and that RFe, the stiffness effect reduction coefficient would have positive correlation with H/B. Finally, it was confirmed that the bearing capacity gained from the method to calculate bearing capacity, which was suggested in the study, would almost correctly estimate the capacity, demonstrating the appropriateness of the proposed bearing capacity calculation method.

  • PDF

신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법 (Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy)

  • 백자현;김현진;최순호;박상호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.

강거더 교량의 신뢰성해석을 위한 저항모델 개발 (Resistance Model for Reliability Analysis of Existing Steel Girder Bridges)

  • 엄준식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권4호
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

Experimental and theoretical research on mechanical behavior of innovative composite beams

  • Zhu, Gang;Yang, Yong;Xue, Jianyang;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • 제14권4호
    • /
    • pp.313-333
    • /
    • 2013
  • The web-encased steel-concrete composite (WESCC) beam is a new developed steel-concrete composite beam. Experiments of six simply supported WESCC beam specimens were conducted. The effects of the shear-span ratio and steel section type were all investigated on the static behaviors such as failure modes, failure mechanism and bearing capacity. The experimental results denoted that all specimens failed in bending mode and the degree of combination between the bottom armor plate of steel shape and concrete were very well without any evident slippage, which demonstrated that the function of bottom armor plate and web were fully exerted in the WESCC beams. It could be concluded the WESCC beams have high stiffness, high load carrying capacity and advanced ductility. The design methods are proposed which mainly consist the bearing capacity calculation of bending and flexural rigidity. The calculation results of the bearing capacity and deflection which take the shear deflection into account are in agreement with the experimental results. The design methods are useful for design and application of the innovative composite beams.

Structural performance of novel SCARC column under axial and eccentric loads

  • Zhou, Chunheng;Chen, Zongping;Li, Junhua;Cai, Liping;Huang, Zhenhua
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.503-516
    • /
    • 2020
  • A novel spiral confined angle-steel reinforced concrete (SCARC) column was developed in this study. A total of 16 specimens were prepared and tested (eight of them were tested under axial loading, the other eight were tested under eccentric loading). The failure processes and load-displacement relationships of specimens under axial and eccentric loads were examined, respectively. The load-carrying capacity and ductility were evaluated by parametric analysis. A calculation approach was developed to predict the axial and eccentric load-carrying capacity of these novel columns. Results showed that the spiral reinforcement provided enough confinement in SCARC columns under axial and low eccentric loads, but was not effective in that under high eccentric loads. The axial load-carrying capacity and ductility of SCARC columns were improved significantly due to the satisfactory confinement from spirals. The outer reinforcement and other construction measures were necessary for SCARC columns to prevent premature spalling of the concrete cover. The proposed calculation approach provided a reliable prediction of the load-carrying capacity of SCARC columns.

최적화 기법을 활용한 UAM 버티포트 수용량 산정방법 연구 (A Study on the UAM Vertiport Capacity Calculation MethodUsing Optimization Technique)

  • 이승준;백호종;박장훈
    • 한국항공운항학회지
    • /
    • 제31권2호
    • /
    • pp.55-65
    • /
    • 2023
  • Due to extreme urbanization, ground transportation in the city center is saturated, and problems such as the lack of expansion infrastructure and traffic congestion increase social costs. To solve this problem, a 3D mobility platform, Urban Air Mobility (UAM), has emerged as a new alternative. A vertiport is a physical space that conducts a similar role to an airport terminal. Vertiport consists of take-off and landing facilities (TLOF, Touchdown and Lift-Off area), space for boarding and disembarking from UAM aircraft (gates), taxiways, and passenger terminals. The type of vertiport (structure, number of facilities) and concept of operations are key variables that determine the number of UAM aircraft that can be accommodated per hour. In this study, a capacity calculation method was presented using an optimization technique (Deterministic Integer Linear Programming). The absolute capacity of the vertiport was calculated using an optimization technique, and a sensitivity analysis was also performed.

Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams

  • Yang, Yong;Li, Hui
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.605-620
    • /
    • 2020
  • An innovative Partially Precast Steel Reinforced Concrete (PPSRC) beam is presented in this paper. To study the shear behavior of PPSRC beams, static loading experiments were conducted on 10 specimens, including 4 T-beam specimens and 4 PPSRC inverted T-beam specimens together with 2 PPSRC rectangular section beams. In the tests, the shear behaviors of the PPSRC beams were emphasized. On the basis of the experiments, the failure mode and ultimate bearing capacity were thoroughly examined. The calculation methods for shear capacity are also presented in this paper. The analysis of mechanical behavior and the calculation methods presented can be used as a reference to design these innovative composite PPSRC beams and provide a significant foundation for further research.