• Title/Summary/Keyword: capacity analysis

Search Result 9,180, Processing Time 0.039 seconds

Analysis of Capacity Factors and Capacity Credits for Wind Turbines Installed in Korea (국내 풍력발전 설비의 이용률과 용량크레딧 분석)

  • Paik, Chunhyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.79-91
    • /
    • 2019
  • The capacity credit (CC) is a key metric for mid- to long-term power system capacity planning. The purpose of this study is to estimate the CCs of domestic wind turbines. Based on hourly capacity factor (CF) data during the seven years from 2011 to 2017, the new so-called probabilistic CF scheme is introduced to effectively reflect the variability of CFs on CC estimation. The CCs are then estimated through the CF-based method and the ELCC (Effective Load Carrying Capability) method reflecting the probabilistic CF scheme, and the results are compared. The results show that the CC value 0.019 for domestic wind turbines proposed in the $8^{th}$ Basic Plan for Electricity Supply and Demand corresponds to the CC with a confidence level slightly lower than 95%.

Seismic Assessment of Shear Capacity of RC Beam-Column Joints Without Transverse Re-bars (내진성능평가시 횡보강근이 없는 RC 보-기둥 접합부의 전단내력 평가)

  • Lee, Young Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.249-259
    • /
    • 2019
  • To study the seismic resistance of the shear capacity of the RC beam-column joints of two-story and four-story RC buildings, sample buildings are designed with ordinary moment resisting frame. For the shear capacity of joints, the equations of FEMA 356 and NZ seismic assessment are selected and compared. For comparison, one group of buildings is designed only for gravity loads and the other group is designed for seismic and gravity loads. For 16 cases of the designed buildings, seismic performance point is evaluated through push-over analysis and the capacity of joint shear strength is checked. Not only for the gravity designed buildings but also for seismic designed buildings, the demand of joint shear is exceeding the capacity at exterior joints. However, for interior joint, the demand of joint shear exceeds the capacity only for one case. At exterior joints, the axial load stress ratio is lower than 0.21 for gravity designed buildings and 0.13 for seismic designed buildings.

Shear Capacity Determination of Steel Fiber Reinforced RC Columns (강섬유 보강 RC 기둥의 전단능력 산정)

  • 이현호;장극관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.891-896
    • /
    • 2001
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members, notably shear strength and ductility, In this study, shear capacity evaluation method according to steel fiber contents was proposed from the literature surveys and member tests. For this, previously proposed five shear strength equation were examined and evaluated by maximum shear strength and shear capacity ratio. From the parametric study and regression analysis, following conclusion can be made; the maximum shear strength of steel fiber reinforced column will be estimated by relative shear capacity ratio.

  • PDF

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.

Optimal RTS-CTS Threshold to Maximize the Capacity of IEEE 802.11 WLAN (IEEE 802.11 무선 LAN의 최대 용량을 위한 최적의 RTS-CTS Threshold)

  • Choi, Woo-Yong
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.195-200
    • /
    • 2003
  • In this paper, the selective use of RTS and CTS frames is considered to analyze the capacity of IEEE 802.11 WLAN (Wireless Local Area Network). The RTS and CTS frames are used to transmit the data frames longer than dot11RTSThreshold according to IEEE 802.11 specification. The analysis of the optimal RTS-CTS threshold is derived to maximize the capacity of IEEE 802.11 WLAN. And, numerical examples are also presented for IEEE 802.11 a and b WLANs.

Analysis of Channel Capacity for VDSL System (VDSL system을 위한 전송능력 분석)

  • 유창완;정인택;송상섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.37-40
    • /
    • 1999
  • In this paper, we analyzed transmission capability of VDSL system under the various noise in VDSL transmission lines. For this, we calculated transmission capacity using loading algorithm with transmission channel which suggested by ANSI DSL standard group TIE1.4. As a result, we've got approximated outcome similiar with target capacity in VDSL systems in short range. But we couldn't have got a outcome with target capacity in long range.

  • PDF

KTX Impact on Train Operation Pattern (An Empirical Analysis) (서울-천안 구간의 열차운행패턴 분석과 시사점)

  • Kim Kyoung-Tae;Lee Jin-Sun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.1047-1053
    • /
    • 2005
  • This study explored pattern of train operation between Seoul Cheonan after the introduction of KTX in 2004. Both number of trains and seat capacity per day have increased but maximum number of trains per specific hour hasn't changed much. Demand for train shows that it concentrated in a specific time, so number of trains during the peak hour should be increased. But, it is difficult due to line capacity, so increasing seat capacity per train might be an option. An increase in seat capacity should be considered the characteristics of each train lines.

  • PDF

Analysis of Forward Link Capacity for a DS/CDMA System with Multirate Traffic Sources

  • Park, Wan;Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.125-128
    • /
    • 2000
  • In this paper, we derive forward link Erlang capacity reflecting both outage probability and blocking probability of each traffic type in mixed traffics environment. We firstly determine the number of available virtual trunks of the forward link from a circuit switching perspective. Then, capacity sharing model and generalized Erlang model are employed to derive joint Erlang capacity of various traffics types.

  • PDF

W-CDMA Uplink Capacity and Interference Statistics of a Long Tunnel Cigar-Shaped Microcells

  • Taha-Ahmed, Bazil;Calvo-Ramon, Miguel;Haro-Ariet, Leandro De
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 2004
  • The uplink capacity and the interference statistics of the sectors of the cigar-shaped W-CDMA microcells are studied. A model of 9 base station, assumed to be in a long tunnel, is used for the uplink analysis. The capacity and the interference statistics of the microcells are studied for different sector ranges, different propagation exponents, different antenna sidelobe levels, and different bend losses.

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.