• Title/Summary/Keyword: capacitor charging

Search Result 215, Processing Time 0.025 seconds

Comparative Analysis of Charging Modes of Series Resonant Converter for an Energy Storage Capacitor (에너지저장 커패시터의 최적 충전을 위한 직렬공진형 컨버터의 운용 모드 비교)

  • Lee, Byung-Ha;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2012
  • In this paper, charging modes of series resonant converter for a high voltage energy storage capacitor are compared in terms of charging time, peak resonant current, normalized peak resonant current and voltage in each operation mode. Operating principles of the full bridge series resonant converter with capacitor load are explained and analyzed in discontinuous and continuous operation mode. Based on the analysis and simulation result, $0.6{\omega}_r$ < ${\omega}_s$ < $0.75{\omega}_r$ and $1.3{\omega}_r$ < ${\omega}_s$ < $1.4{\omega}_r$ are evaluated to the best range of switching frequency for charging of an high voltage energy storage capacitor. 1.8 kJ/s SRC prototype is assembled with TI 28335 DSP controller and 40 kJ, 7 kV energy storage capacitor. Design rules based on the comparative analysis are verified by experiment.

PFC control method using the charging current of the capacitor (커패시터 충전 전류를 이용한 PFC 제어 방법)

  • Lee, Seung-Heyon;Lee, Chi-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.13-14
    • /
    • 2014
  • This paper is proposed the PFC control method of boost converter using a charging current of the capacitor. Around AC voltage peak point, PFC operation is stopped and the charging current of the capacitor is flowed. The charging current of the capacitor and the switching current makes the AC input current. The 150[W] converter was confirmed high PF and low THD.

  • PDF

Analysis of the Charging Characteristics of High Voltage Capacitor Chargers Considering the Transformer Stray Capacitance

  • Lee, Byungha;Cha, Hanju
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.329-338
    • /
    • 2013
  • In this paper, the charging characteristics of series resonant type high voltage capacitor chargers considering the transformer stray capacitance have been studied. The principles of operation for the four operational modes and the mode changes for the four different switching frequency sections are explained and analyzed in the range of switching frequency below the resonant frequency. It is confirmed that the average charging currents derived from the above analysis results have non-linear characteristics in each of the four modes. The resonant current, resonant voltage, charging current, and charging time of this capacitor charger as variations of the switching frequency, series parallel capacitance ratio ($k=C_p/C_s$), and output voltage are calculated. From the calculation results, the advantages and disadvantages arising from the parallel connection of this stray capacitance are described. Some methods to minimize charging time of this capacitor charger are suggested. In addition, the results of a comparative test using two transformers whose stray capacitances are different are described. A 1.8 kJ/s prototype capacitor charger is assembled with a TI28335 DSP controller and a 40 kJ, 7 kV capacitor. The analysis results are verified by the experiment.

Fast Charging Photoflash Capacitor Charger with Wide Range Current Limiter

  • Choi, Won-Ho;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2007
  • The fast charging photoflash capacitor charger with wide range current limiter is presented. By using proposed control logic block and wide range current limiter, the photoflash capacitor charger can reduce charging time and control life of battery for user convenience. The proposed photoflash capacitor charger has 3s charging time at 3.3V battery voltage, 1.2A current limit condition. It is well-suited for portable device application like digital camera, digital video camera, and mobile phone with camera.

  • PDF

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.

Study on the High and High Voltage 35 kW, 50 kV Inverter Power Supply (대출력 고전압 35 kW, 50 kV 인버터 전원장치 개발에 관한 연구)

  • Son, Yoon-Gyu;Jang, Sung-Duck;Oh, Jong-Seok;Cho, Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.628-634
    • /
    • 2002
  • A capacitor-charging power supply using high frequency inverter technology is strongly recommended for the charging section of the pulsed power supplies. A high frequency inverter swiching makes the overall system size small. The command-charging feature can guarantee the higher reliability of switching function. The protection circuit can be easily included in the system and the good regulation of charging voltage can be acieved by the feedback system. Several modules can be stacked to supply required output power and a failed module can be easily replaced. A 50-kV, 35-kW capacitor charging power supply is developed. In this paper the detailed design and test results of a prototype unit are presented.

Method for improving the capacitor charging speed of portable high voltage device (휴대용 고압 기기에 적합한 커패시터 충전 속도 향상 방안)

  • Kim, Chul-Jin;Hong, Sung-Ho;Lee, Soo-Rang;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.215-217
    • /
    • 2007
  • This paper proposes the method to improve the charging speed of high voltage capacitor used in the portable medical device. The feedback control method with microprocessor was used to detect charging time and control charging voltage. The result shows that the proposed method is more efficient than only voltage check method with typical charging sequence control.

  • PDF

Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application (펄스파워용 고전압 고에너지밀도 커패시터 개발)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

Development of 20kV Pulse Power Charging System (20kV급 Capacitor Charging Power System 개발)

  • Jeong, I.W.;Rim, G.H.;Choi, Y.W.;Lee, H.S.;Kim, J.S.;Ryoo, H.J.;Gusev, G.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.213-214
    • /
    • 2001
  • This paper describes a power supply for a rapid pulse power charging system designed for charging a $0.35{\mu}F$ capacitor to 20kV in approximately 3ms. The power supply should be capable of recharging the load capacitor maximum 300 times within one second. This power supply is based on a series resonant 3-phase inverter followed by the step-up transformers. The experiments have been carried out at different repetition rates and charging voltages.

  • PDF

Low-cost crowbar system and protection scheme in capacitor bank module (커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로)

  • Rim, Geun-Hie;Cho, Chu-Hyun;Lee, Hong-Sik;Pavlov, E.P.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF