• Title/Summary/Keyword: capacitive application

Search Result 103, Processing Time 0.034 seconds

Feedback control for initially unengaged vertical comb type electrostatic scanner (초기 비결합된 수직빗살 전극형 정전 스캐너의 거동제어)

  • Lee, Byeung-Leul;Won, Jongw-Ha;Cho, Jin-Woo;Jeong, Hee-Mun;Cho, Yong-Chol;Lee, Jin-Ho;Go, Young-Chol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.845-846
    • /
    • 2006
  • In this paper, we describe a capacitive position sensing and motion control scheme of a MEMS scanner used for laser display application. The laser displays can be made by scanning laser beams much the same way a CRT scans electron beams. So the accuracy of the scanner motion determines the quality of the displayed image. The MEMS scanner under consideration is composed of electrostatic comb electrodes with initial gap and requires large driving voltage. Due to the under-damping and nonlinear driving characteristics, the scanner motion is subject to be an unwanted oscillation. For the linear scanner motion, we devise a differential charge amplifier and phase compensator. The experimental results show that the implemented feedback control system provides sufficient electrical damping and improves the dynamic performance of the scanner.

  • PDF

A Study on the ECU for Controlling One Cylinder Motorcycle Engine (단기통 모터사이클 엔진 제어용 ECU에 관한 연구)

  • Jung, Tae-Gyun;Chae, Jae-Ou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.13-20
    • /
    • 2005
  • The most typical fuel control devices of motorcycle engines have carburetors, they are simple in structure and reliable in work. Most of the motorcycle engines have used carburetors in the fuel system, but the fuel economy and the emissions of those engines are bad when we compared with automobile engines. According to stricter emission regulations and higher requirements for fuel economy, the application of the carburetor on the motorcycle engines would be limited. In this paper, we studied about the ECU of motorcycle engine controled by indirect method. A new engine system was designed and experiments were carried out. The experimental results for both carburetor type and ECU type were compared. Maximum torque of $1.053kg{\cdot}m$ at 6500rpm was measured. The engine torque controled using ECU was increased by $10\%$ compared with the carburetor type.

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Spray and Depositional Characteristics of Electrostatic Nozzles for Orchard Sprayers (과수 방제기용 정전대전 노즐의 분무 및 부착특성)

  • 강태경;이동현;이채식;이공인;최완규;노수영
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Spraying is one of the most efficient methods for pesticide and insecticide control. Generally, orchard sprayers(aircarrier sprayer) are used for such applications. However, when an orchard sprayer is used, only 20% of total amount of spray deposits on the target. The rest of spray are not only wasted but are also potential sources of environmental pollution. The research far the development of electrostatic spraying system for orchard sprayer was conducted to develop the new pesticide application technology for the reduction of environmental pollution and f3r the production of safe agricultural products. The spray characteristics for nozzles with the different charging methods were tested and the effect of electrostatic charge was analyzed, in the laboratory experiments. The results of this study indicate that the capacitive type of electrostatic spraying nozzle exhibits a large current deposition of water sprays on the sample target. The covering area ratio by conventional spraying system was 10.2%, while that of electrostatic sprays with pulse induction charging method gave the increased covering area ratio by 4.3 times.

DESIGN AND FABRICATION OF S-BAND DIPLEXER FOR LEO TT&C APPLICATION (저궤도 위성 관제용 S-대역 다이플렉서 설계 및 제작)

  • Ahn, Sang-Il;Park, Dong-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.397-408
    • /
    • 2007
  • Diplexer is one of core devices needed to communicate with satellite using single ground antenna by separating uplink and downlink signal. This paper presents the design of the S-band diplexer for LEO TT&C application, especially for KOMPSAT (KOrea Multi-Purpose SATellite). To cope with requirements such as high handling power, low insertion loss, air-cavity resonator with high quality factor was considered as one of design drivers. Design was started with predicting unloaded Q and equivalent circuit from the structure of air-cavity resonator. For the convenience of adjustment, the coupling factor placed between resonators was estimated from COTSEM (Electro-Magnetic) simulator, EESOF $ADS^{TM}$, and expressed with 2-order polynomial regression. To improve the isolation between transmitting part (Tx) and receiving part (Rx), the inductive and capacitive attenuation poles were inserted between $4^{th}\;and\;6^{th}$ resonator respectively. The fabricated diplexer consists of two bandpass filters and each filter has eight resonants. From the measurement, it was shown that major requirements such as 0.5dB of insertion loss, 20dB of return loss and 100dB of isolation were fully satisfied within passband.

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

Design of Wideband Small Antenna for UWB Communication (UWB 통신용 광대역 소형 안테나 설계)

  • Ko Ji-Whan;Shin In-Ho;Lee Young-Soon;Cho Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1086-1098
    • /
    • 2005
  • Two types of small wideband antennas are proposed for UWB application. One type is small biconical structure fed by coaxial probe, which is easy to be installed on the circuit board. The other type is of planar bow-tie type fed by coplanar transmission line. Generally, the bandwidth of the latter type is significantly narrower than that of the former type. It is shown, however that the bandwidth of the latter type can be made to be comparable to that of the former, if some series inductive component is introduced in the center conductor line in the CPW transmission line by replacing some part of center line with narrower line of higher characteristic impedance. The series inductance component play an important role of neutralizing the capacitive component of the small bow-tie antenna, thereby making broadband impedance matching possible. The small planar bow-tie antenna was fabricated and experimented. The experimental results for return loss are observed to be in good agreement with simulated results. The radiation pattern is also investigated experimentally.