• Title/Summary/Keyword: canopy coverage

Search Result 68, Processing Time 0.022 seconds

Effect of Red Pepper Canopy Coverages on Soil Loss and Runoff from Sloped Land with Different Transplanting Dates (경사지에서 고추 정식시기에 따른 토양유실과 유출수에 대한 식생피복 효과)

  • Cho, H.R.;Ha, S.K.;Hyun, S.H.;Hur, S.O.;Han, K.H.;Hong, S.Y.;Jeon, S.H.;Kim, E.J.;Lee, D.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.260-267
    • /
    • 2010
  • As sloped farmland is subject to runoff and soil erosion and consequently require appropriate vegetative coverage to conserve soil and water, a field study was carried out to evaluate the impact of crop canopy coverage on soil loss and runoff from the experimental plot with three different textural types (clay loam, loam, and sandy loam). The runoff and soil loss were examined at lysimeters with 15% slope, 5 m in length, and 2 m in width for five months from May to September 2009 in Suwon ($37^{\circ}$ 16' 42.67" N, $126^{\circ}$ 59' 0.11" E). Red pepper (Capsicum annum L. cv. Daechon) seedlings were transplanted on three different dates, May 4 (RP1), 15 (RP2), and 25 (RP3) to check vegetation coverage. During the experimental period, the vegetation coverage and plant height were measured at 7 day-intervals and then the 'canopy cover subfactor' (an inverse of vegetation cover) was subsequently calculated. After each rainfall ceased, the amounts of soil loss and runoff were measured from each plot. Under rainfall events >100 mm, both soil loss and runoff ratio increased with increasing canopy cover subfactor ($R^2$=0.35, p<0.01, $R^2$=0.09, p<0.1), indicating that as vegetation cover increases, the amount of soil loss and runoff reduces. However, the soil loss and runoff were depending on the soil texture and rainfall intensity (i. e., $EI_{30}$). The red pepper canopy cover subfactor was more highly correlated with soil loss in clay loam ($R^2$=0.83, p<0.001) than in sandy loam ($R^2$=0.48, p<0.05) and loam ($R^2$=0.43, p<0.1) plots. However, the runoff ratio was effectively mitigated by the canopy coverage under the rainfall only with $EI_{30}$<1000 MJ mm $ha^{-1}hr^{-1}$ ($R^2$=0.34, p<0.05). Therefore, this result suggested that soil loss from the red pepper field could be reduced by adjusting seedling transplanting dates, but it was also affected by the various soil textures and $EI_{30}$.

Numerical Simulation on the Effect of the Land Coverage Change on the Urban Heat Budget (토지피복 변화가 도시열수지에 미치는 영향에 관한 수치시뮬레이션)

  • Kim, Sang-Ok;Yeo, In-Ae;Ha, Kyung-Min;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.176-179
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed using 3-Dimensional Urban Canopy Model. The characteristics of urban thermal environment was analyzed by classifying land coverage and increasing natural land coverage ratio. The results are as follows. The characteristics of the land coverage on urban thermal environment formation can be summarized by the effects like higher temperature on the artificial coverage, and the contrary effects on the natural coverage. When the water coverage 100% was made up, maximum temperature was declined by $5.5^{\circ}C$, humidity by the 6.5g/kg, wind velocity by 0.6m/s, convective sensible heat by $400W/m^2$ and the evaporative latent heat was increased by $370W/m^2$ compared to when artificial coverage 100% was formed. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analysing urban climate phenomenon.

  • PDF

SPECTRAL ANALYSIS OF WATER-STRESSED FOREST CANOPY USING EO-l HYPERION DATA

  • Kook Min-Jung;Shin Jung-Il;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.7-10
    • /
    • 2005
  • Plant water deficiency during drought season causes physiological stress and can be a critical indicator of forest fire vulnerability. In this study, we attempt to analyze the spectral characteristics of water stressed vegetation by using the laboratory measurement on leaf samples and the canopy reflectance spectra extracted from satellite hyperspectral image data. Leaf-level reflectance spectra were measured by varying moisture content using a portable spectro-radiometer. Canopy reflectance spectra of sample forest stands of two primary species (pine and oak) located in central part of the Korean peninsula were extracted from EO-l Hyperion imaging spectrometer data obtained during the drought season in 2001 and the normal precipitation year in 2002. The preliminary analysis on the reflectance spectra shows that the spectral characteristics of leaf samples are not compatible with the ones obtained from canopy level. Although moisture content of vegetation can be influential to the radiant flux reflected from leaf-level, it may not be very straightforward to obtain the spectral characteristics that are directly related to the level of canopy moisture content. Canopy spectra form forest stands can be varied by structural variables (such as LAt, percent coverage, and biomass) other than canopy moisture content.

  • PDF

Ultrasonic Sensor Controlled Sprayer for Variable Rate Liner Applications (초음파센서를 이용한 변량제어 스프레이어)

  • Jeon, Hong-Young;Zhu, Heping
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • An experimental variable rate nursery sprayer was developed to adjust application rates for canopy volume in real time. The sprayer consisted of two vertical booms integrated with ultrasonic sensors, and variable rate nozzles coupled with pulse width modulation (PMW) based solenoid valves. A custom-designed microcontroller instructed the sensors to detect canopy size and occurrence and then controlled nozzles to achieve variable application rates. A spray delivery system, which consisted of diaphragm pump, pressure regulator and 4-cycle gasoline engine, offered the spray discharge function. Spray delay time, time adjustment in spray trigger for the leading distance of the sensor, was measured with a high-speed camera, and it was from 50 to 140 ms earlier than the desired time (398 ms) at 3.2 km/h under indoor conditions. Consequently, the sprayer triggered 4.5 to 12.5 cm prior to detected targets. Duty cycles of the sprayer were from 20 to 34 ms for senor-to-canopy (STC) distance from 0.30 to 0.76 m. Outdoor test confirmed that the nozzles were triggered from 290 to 380 ms after detecting tree canopy at 3.2 km/h. The spray rate of the new sprayer was 58.4 to 85.2% of the constant application rate (935 L/ha). Spray coverage was collected at four areas of evergreen canopy by water sensitive papers (WSP), and ranged from 1.9 to 41.1% and 1.8 to 34.7% for variable and constant rate applications, respectively. One WSP area had significant (P < 0.05) difference in mean spray coverage between two application conditions.

Crop Growth Measurements by Image Processing in Greenhouse - for Lettuce Growth - (화상처리를 이용한 온실에서의 식물성장도 측정 -상추 성장을 중심으로-)

  • 김기영;류관희
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.285-290
    • /
    • 1998
  • Growth information of crops is essential for efficient control of greenhouse environment. However, a few non-invasive and continuous monitoring methods of crop growth has been developed. A computer vision system with a CCD camera and a frame grabber was developed to conduct non-destructive and intact plant growth analyses. The developed system was evaluated by conducting the growth analysis of lettuce. A linear model that explains the relationship between the relative crop coverage by the crop canopy and dry weight of a lettuce was presented. It was shown that this measurement method could estimate the dry weight from the relative crop coverage by the crop canopy. The result also showed that there was a high correlation between the projected top leaf area and the dry weight of the lettuce.

  • PDF

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.

Quantitative Study on the Effect of the Building Composition on the Urban Thermal Environment (건물군 조건이 도시 열환경에 미치는 영향에 관한 정량적 검토)

  • Yeo, In-Ae;Yoko, Kamata;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.180-183
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate was analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1)The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. (2)Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature.

  • PDF

Characteristics of Breeding Bird Community in Relation to Altitude and Vegetation in Jirisan National Park (지리산국립공원 해발고도와 식생에 따른 번식기 조류군집의 특성)

  • Lee, Do-Han;Kwon, Hye-Jin;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.5
    • /
    • pp.471-480
    • /
    • 2008
  • This study was conducted to investigate the characteristics of breeding bird community in relation to altitude and vegetation in Jirisan National Park. The survey was carried over 4 study sites by point counts method to figure out habitat environment and breeding bird community from March to August in 2006. The study results are summarized as follows: Total 32 species were recorded, and 27 species and density of 37.31 ea/ha in low altitude mixed forest, 23 species and 34.99 ea/ha in low altitude deciduous forest, 18 species and 23.95 ea/ha in high altitude mixed forest, 19 species and 20.21 ea/ha in high altitude deciduous forest, respectively. Eleven species were observed only in the low altitude sites, 4 species were observed only in the high altitude sites. Number of species and density were high in the low altitude sites, and they were high in the mixed forests. In nesting guild analysis, the low altitude sites are similarly found species number of three types but canopy nesting species in the high altitude sites are advent less. In foraging guild analysis, the species number of canopy foraging appeared most highly in all study sites. In the difference analysis of each species density. Four species which are showed the difference in the low altitude sites, owing to vegetation. Long-tailed Tit(Aegithalos caudatus) and Great tit(Parus major) are difference because of difference in volume of canopy layer, and Coal Tit(Parus ater) was difference because of coniferous forest preference quality. Four species(Hazel Grouse, Winter Wren, Pale Thrush, Yellow-throated Bunting) which are showed the difference of the density in the high altitude sites because of thick growth of the bush layer. Ten species which are showed the difference in study sites, owing to altitude. Oriental Cuckoo(Cuculus saturatus), Winter Wren(Troglodytes troglodytes), Siberian Blue Robin(Luscinia cyane), Arctic Warbler(Phylloscopus borealis), Coal Tit(Parus ater), and Yellow-throated Bunting(Emberiza elegans) appeared highly in the high altitude sites, Pale Thrush(Turdus pallidus), Long-taild Tit(Aegithalos caudatus), Varied Tit(Parus varius), and Eurasian Nuthatch(Sitta europaea) appeared highly in the low altitude sites. It seems that bush layer coverage volume and canopy layer total coverage volume do influences on the breeding bird community, because the bush layer was thick growth, and canopy layer coverage volume was difference. It would be needed the management and maintenance of bush layer coverage volume and canopy layer with multi-layer structure to increase foliage height diversity and total coverage volume for the protection and management of bird community in Jirisan National Park.

Analysis of Bird Species Diversity Response to Structural Conditions of Urban Park - Focused on 26 Urban Parks in Cheonan City - (도시공원 구조 및 식생 조건에 따른 조류 종다양성 분석 - 천안시 26개 도시공원을 대상으로 -)

  • Song, Wonkyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.65-77
    • /
    • 2015
  • The urban park has important functions as a habitat for wildlife as well as open space of rest and community for people. This study was carried out to find what factors of structure and vegetation of urban parks could affect forest bird species diversity in Cheonan city. The study surveyed bird and vegetation species in 26 urban parks, Cheonan city. A correlation analysis and multiple linear regressions were performed to test whether habitat structure and vegetation were the major correlate with species diversity. The results showed the Dujeong park was the most high bird species diversity (H' = 2.13), and the Dujeong-8 park (H' = 2.02) and the Cheongsa park (H' = 1.73) were considerably higher than the other urban parks. The variables that were strongly correlated with bird species diversity were park area, number of subtree species, canopy of shrub, number of shrub species, shape index, canopy of subtree, canopy of tree, and impervious surface ratio. The regression of bird species diversity against the environmental variables showed that 3 variables of park area, canopy of subtree, and canopy of tree were included in the best model. Model variable selection was broadly similar for the 5 optimal models. It means park area and multi-layer vegetation were the most consistent and significant predictor of bird species diversity, because urban parks were isolated by built-up areas. Especially the subtree coverage that provides shelter and food for forest birds was an important variable. Therefore, to make parks circular-shaped and abundant multi-layer vegetation, which could be a buffer to external disturbances and improve the quality of habitats, may be used to enhance species diversity in creation and management of urban parks.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.