• Title/Summary/Keyword: canola oil

Search Result 104, Processing Time 0.034 seconds

Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

  • Lee, Hyun-Jin;Jung, Eun-Hee;Lee, Sang-Hwa;Kim, Jong-Hee;Lee, Jae-Joon;Choi, Yang-Il
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.130-136
    • /
    • 2015
  • This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers.

Influence of supplemental canola or soybean oil on milk yield, fatty acid profile and postpartum weight changes in grazing dairy goats

  • Lerma-Reyes, Israel;Mendoza-Martinez, German D.;Rojo-Rubio, Rolado;Mejia, Mario;Garcia-Lopez, J.C.;Lee-Rangel, Hector A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.225-229
    • /
    • 2018
  • Objective: This experiment was designed to evaluate the effect of supplementation with soybean or canola oil on milk production and the composition of long chain fatty acids as well as weight changes in the goats and their kids. Methods: Thirty nine mulitparous crossed Alpine${\times}$Nubian goats (initial body weight [BW] $43.5{\pm}1.7kg$) from the day of parturition were assigned to the treatments: grazing control (n = 15); grazing plus 20 mL/goat/d of supplemental soybean oil (n = 12); and grazing plus 20 mL/goat/d of supplemental canola oil (n = 12) from November 26, 2014 to March 7, 2015. The planned contrasts were: CI (control vs supplemented with oils); CII (soybean vs canola oil) to compare the treatment effects. Results: The vegetable oil supplementation reduced weight losses in lactating goats (CI: -0.060 vs 0.090 kg/d; p = 0.03) but did not improve milk production or affect kids' growth. The content of C4, C6, C8, C10, C11, C14, and C18:1n9t in the milk was increased (p<0.05) with respect to control. However, C12, C14, C16, C18, C18:1n9c, C18:2n6c, and C18:3n3 were reduced (p<0.05) in supplemented goats. Conjugated linoleic acid (CLA) was increased (p<0.05) in goats supplemented with oils compared to the control group. Conclusion: Supplementation with 20 mL/d of soybean or canola oil did not affect milk production or kids' performance; however, it increased CLA concentration and reduced the reduced weight losses in lactating goats.

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

Effects of Replacing Pork Back Fat with Canola and Flaxseed Oils on Physicochemical Properties of Emulsion Sausages from Spent Layer Meat

  • Baek, Ki Ho;Utama, Dicky Tri;Lee, Seung Gyu;An, Byoung Ki;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.865-871
    • /
    • 2016
  • The objective of this study was to investigate the effects of canola and flaxseed oils on the physicochemical properties and sensory quality of emulsion-type sausage made from spent layer meat. Three types of sausage were manufactured with different fat sources: 20% pork back fat (CON), 20% canola oil (CA) and 20% flaxseed oil (FL). The pH value of the CA was significantly higher than the others (p<0.05). The highest water holding capacity was also presented for CA; in other words, CA demonstrated a significantly lower water loss value among the treatments (p<0.05). CA had the highest lightness value (p<0.05). However, FL showed the highest yellowness value (p<0.05) because of its own high-density yellow color. The texture profile of the treatments manufactured with vegetable oils showed higher values than for the CON (p<0.05); furthermore, CA had the highest texture profile values (p<0.05) among the treatments. The replacement of pork back fat with canola and flaxseed oils in sausages significantly increased the omega-3 fatty acid content (p<0.05) over 15 to 86 times, respectively. All emulsion sausages containing vegetable oil exhibited significantly lower values for saturated fatty acid content and the omega-6 to omega-3 ratios compared to CON (p<0.05). The results show that using canola or flaxseed oils as a pork fat replacer has a high potential to produce healthier products, and notably, the use of canola oil produced characteristics of great emulsion stability and sensory quality.

Effects of Sodium Tripolyphosphate and Canola Oil on the Quality of Chicken Nuggets Made from Old Layer Meat (Sodium Tripolyphosphate와 카놀라유 첨가가 산란 성계육으로 제조한 치킨너깃의 품질에 미치는 영향)

  • Kim, Juntae;Utama, Dicky Tri;Jeong, Hae Seong;An, Byoung Ki;Lee, Sung Ki
    • Korean Journal of Poultry Science
    • /
    • v.45 no.2
    • /
    • pp.89-96
    • /
    • 2018
  • This study aimed to investigate the effect of adding sodium tripolyphosphate (STPP) and canola oil on the quality traits of chicken nuggets. The nuggets were prepared from the breast meat of 75-week-old Hy-line old layer. Experiment 1 was conducted to evaluate the effect of adding different levels (0%, 0.1%, 0.2%, and 0.3%) of STPP addition (w/w). It was found that moisture content and cooking yield were significantly increased by the addition of STPP (P<0.05). STPP addition significantly increased hardness and Warner-Bratzler shear force (WBSF) value (P<0.05). Thereafter, STPP addition was fixed at 0.3% (w/w) and another experiment was performed to investigate the effect of canola oil addition (w/w) at different levels (5%, 10%, and 15%). There was no difference in pH depending on canola oil content. However, emulsion capacity, fat loss, and total water loss increased with the increase in canola oil content (P<0.05). Hardness and WBSF value showed significant decreases as canola oil content increased (P<0.05). Texture and overall acceptance were significantly increased with the increase in canola oil content in a test based sensory evaluation. In conclusion, adding 0.3% STPP and 15% canola oil to chicken nuggets made from the old layer could produce a product with an acceptable quality.

Effects of Dietary Canola Oil on Growth, Feed Efficiency, and Fatty Acid Profile of Bacon in Finishing Pigs and of Longissimus Muscle in Fattening Horses

  • Joo, Eun-Sook;Yang, Young-Hoon;Lee, Seung-Chul;Lee, Chong-Eon;Cheoung, Chang-Cho;Kim, Kyu-Il
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Studies were carried out to determine the effect of feeding diet containing 5% canola oil on growth, feed efficiency, and fatty acid profile of bacon in finishing pigs and of longissimus muscle in horses fattening for meat production. In experiment 1, twenty cross-bred barrows and twenty cross-bred gilts (average weight, 80 kg) were blocked by sex and weight, and five barrows or five gilts were allotted to one of eight pens $(6.25m^2/pen)$, respectively. Four pens (two with barrows and two with gilts) randomly selected were assigned to a control diet containing 5% tallow and the remaining four pens to a diet containing 5% canola oil. The average daily weight gain, daily feed intake and feed efficiency over a 6-wk feeding period were not different (p>0.05) between the two diets, nor was backfat thickness. Fatty acid profile in bacon fat showed that the 0-3 fatty acid ($\alpha-linolenic$ acid) content in pigs fed diet containing 5% canola oil was approximately three times (P<0.01) as much as in pigs fed tallow. In experiment 2, thirty-two Jeju horses (average $weight{\pm}SE,\;244{\pm}5kg$) were blocked by sex and weight, and two horses of the same sex and similar body weight were allotted to one $(15m^2/pen)$ of eight pens. Eight pens (four with males and four with females) selected randomly were assigned to a control diet containing 5% tallow and the remaining eight pens to a diet containing 5% canola oil. The average daily weight gain, daily feed intake and feed efficiency for concentrates without roughages over a 5-month feeding period were not different (P>0.05) between the two diet groups. Fatty acid profile in the muscle fat showed that the 0-3 fatty acid (a-linolenic acid) content in horses fed diet containing 5% canola oil was approximately two times (P<0.01) that in horses fed tallow. The increased (P<0.01) 0-3 fatty acid content in pigs and horses fed canola oil decreased the ratio of n-6 to n-3 fatty acids compared to the control, indicating a significant improvement in pork and horsemeat fatty acid profile for health benefit. Our study demonstrated that feeding diet containing 5% canola oil may help produce pork and horsemeat with more health benefit, increasing their $\alpha-linolenic$ acid content without deleterious effects on growth of pigs and horses.

Canola oil is an excellent vehicle for eliminating pesticide residues in aqueous ginseng extract

  • Cha, Kyu-Min;Lee, Eun-Sil;Kim, Il-Woung;Cho, Hyun-Ki;Ryu, Ji-Hoon;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • Background: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. Methods: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. Results: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. Conclusion: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

  • Vafa, Toktam S.;Naserian, Abbas A.;Moussavi, Ali R. Heravi;Valizadeh, Reza;Mesgaran, Mohsen Danesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.311-319
    • /
    • 2012
  • This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows ($42{\pm}12$ DIM, $40{\pm}6kg$ daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double $4{\times}4$ Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of milk.

Recent advances in canola meal utilization in swine nutrition

  • Mejicanos, G.;Sanjayan, N.;Kim, I.H.;Nyachoti, C.M.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.2
    • /
    • pp.7.1-7.13
    • /
    • 2016
  • Canola meal is derived from the crushing of canola seed for oil extraction. Although it has been used in swine diets for a long time, its inclusion levels have been limited due to concerns regarding its nutritive value primarily arising from results of early studies showing negative effects of dietary canola meal inclusion in swine diets. Such effects were attributable to the presence of anti-nutritional factors (ANF; notably glucosinolates) in canola meal. However, due to advances in genetic improvements of canola that have led to production of cultivars with significantly lower ANF content and improved processing procedures, canola meal with a superior nutritive value for non-ruminant animals is now available. Therefore, the aim of this paper is to review the recent studies in the use of canola meal as feedstuff for swine, the factors influencing its use and the strategies to overcome them. First a historical overview of the development of canola is provided.

Effects of Blending Oil and Antioxidants to Prevent Rancidity of Sancho Oil (산초유 산패방지를 위한 항산화물질과 혼합유의 영향)

  • Kim, Hak Gon;Kang, Seung Mi;Park, Dong Jin;Yong, Seong Hyeon;Yang, Woo Hyeong;Park, Jun Ho;Yu, Chan Yeol;Solomon, Tamirat;Choi, Myung Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.455-463
    • /
    • 2018
  • Background: Sancho (Zanthoxylum schinifolium Siebold and Zucc) oil is used as a traditional medicinal material to treat severs stomach inflammation and as a diuretic. This study was carried out to investigate the effect of addition of antioxidants and blended oil the storage stability and safety of the biomaterial. Methods and Results: The effects of temperature and light on sancho oil were investigated, and the ability of antioxidants in preventing rancidity of the oil was discovered. Under fluorescent light and in darkness, the acidity of the oil was much lower than that under direct sunlight. The addition of antioxidants decreased the acid value of sancho oil; the antioxidant that showed the best results in this regard was 0.5% propolis. The acid value of canola oil, which had the lowest acid value compared with that of other oils, and blended oil, containing 5% canola oil in sancho oil, decreased by 5.5% and 15%, respectively. About one acid value decrease was observed for every 1% increase in blending with canola oil. As the concentration of canola oil increased, the viscosity and the elightness (L valu) of sancho oil increased slightly, while the blueness (b value) decreased. Conclusions: The results of this study may contribute to ensuring food safety during preservation and the industrialization of the presevation of sancho oil.