• Title/Summary/Keyword: candidate selection

Search Result 506, Processing Time 0.024 seconds

Lip Contour Detection by Multi-Threshold (다중 문턱치를 이용한 입술 윤곽 검출 방법)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.431-438
    • /
    • 2020
  • In this paper, the method to extract lip contour by multiple threshold is proposed. Spyridonos et. el. proposed a method to extract lip contour. First step is get Q image from transform of RGB into YIQ. Second step is to find lip corner points by change point detection and split Q image into upper and lower part by corner points. The candidate lip contour can be obtained by apply threshold to Q image. From the candidate contour, feature variance is calculated and the contour with maximum variance is adopted as final contour. The feature variance 'D' is based on the absolute difference near the contour points. The conventional method has 3 problems. The first one is related to lip corner point. Calculation of variance depends on much skin pixels and therefore the accuracy decreases and have effect on the split for Q image. Second, there is no analysis for color systems except YIQ. YIQ is a good however, other color systems such as HVS, CIELUV, YCrCb would be considered. Final problem is related to selection of optimal contour. In selection process, they used maximum of average feature variance for the pixels near the contour points. The maximum of variance causes reduction of extracted contour compared to ground contours. To solve the first problem, the proposed method excludes some of skin pixels and got 30% performance increase. For the second problem, HSV, CIELUV, YCrCb coordinate systems are tested and found there is no relation between the conventional method and dependency to color systems. For the final problem, maximum of total sum for the feature variance is adopted rather than the maximum of average feature variance and got 46% performance increase. By combine all the solutions, the proposed method gives 2 times in accuracy and stability than conventional method.

Multi-user Diversity Scheduling Methods Using Superposition Coding Multiplexing (중첩 코딩 다중화를 이용한 다중 사용자 다이버시티 스케줄링 방법)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.332-340
    • /
    • 2010
  • In this paper, we deal with multi-user diversity scheduling methods that transmit simultaneously signals from multiple users using superposition coding multiplexing. These methods can make various scheduling methods be obtained, according to strategies for user selection priority from the first user to the first-following users, strategies for per-user power allocation, and resulting combining strategies. For the first user selection, we consider three strategies such as 1) higher priority for a user with a better channel state, 2) following the proportional fair scheduling (PFS) priority, 3) higher priority for a user with a lower average serving rate. For selection of the first-following users, we consider the identical strategies for the first user selection. However, in the second strategy, we can decide user priorities according to the original PFS ordering, or only once an additional user for power allocation according to the PFS criterion by considering a residual power and inter-user interference. In the strategies for power allocation, we consider two strategies as follows. In the first strategy, it allocates a power to provide a permissible per-user maximum rate. In the second strategy, it allocates a power to provide a required per-user minimum rate, and then it reallocates the residual power to respective users with a rate greater than the required minimum and less than the permissible maximum. We consider three directions for scheduling such as maximizing the sum rate, maximizing the fairness, and maximizing the sum rate while maintaining the PFS fairness. We select the max CIR, max-min fair, and PF scheduling methods as their corresponding reference methods [1 and references therein], and then we choose candidate scheduling methods which performances are similar to or better than those of the corresponding reference methods in terms of the sum rate or the fairness while being better than their corresponding performances in terms of the alternative metric (fairness or sum rate). Through computer simulations, we evaluate the sum rate and Jain’s fairness index (JFI) performances of various scheduling methods according to the number of users.

Analysis of Site Condition in Domestic Trade Port for Operation of Mobile Harbor (모바일하버 운영을 위한 국내 무역항 후보지 분석)

  • Lee, Joong-Woo;Gug, Seung-Gi;Jung, Dae-Deug;Yang, Sang-Young;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.781-786
    • /
    • 2010
  • In this study, a new concept of ocean transport system, called the mobile harbor serving for a short distance transport of containers with cargo handling cranes between mother containerships and coastal ports, is introduced. Instead of direct berthing a very large containership at the coastal port, Mobile Harbor is moving to the offshore mooring basin with enough water depth condition. Therefore, investigation of the coastal environment, technical condition and limitation of the domestic trade ports for the application of Mobile Harbor, is essential process. To figure out the accessibility of mobile harbor, the environmental conditions, the cargo handling capacity and marine traffic volume and flow pattern has been analyzed with the tools for marine traffic simulation and virtual navigation aids system. The most proper Mobile Harbor mooring areas among trade ports of the south and east coast are selected by analyzing the obtained information and evaluating its application: (1) Under natural environmental conditions such as air and sea weather, three candidate areas are selected such as Masan port, Ulsan port, and Busan(New port) port. (2) Under marine traffic and appropriateness of water facilities, three candidate areas are selected as Mokpo port, Busan(New port) port, and Donghae & Mookho port (3) For a region-based analysis considering handling capacity and the local managed trade ports in vicinity, three candidate areas are selected as Busan region, Yosu & KwangYang region, and Mokpo region. Through this study, the basic guideline for selection of optimum trade port and offshore mooring basin for mothership and Mobile Harbor is recommended. In order to apply the Mobile Harbor to the real water, navigaton aids as the virtual route identification with AIS must be introduced for maritime safety in the vicinity of Mobile Harbor area which berthing and cargo handling is being conducted.

Target candidate fish species selection method based on ecological survey for hazardous chemical substance analysis (유해화학물질 분석을 위한 생태조사 기반의 타깃 후보어종 선정법)

  • Ji Yoon Kim;Sang-Hyeon Jin;Min Jae Cho;Hyeji Choi;Kwang-Guk An
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.109-125
    • /
    • 2023
  • This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as "bad conditions". Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Estimation of the Accuracy of Genomic Breeding Value in Hanwoo (Korean Cattle) (한우의 유전체 육종가의 정확도 추정)

  • Lee, Seung Soo;Lee, Seung Hwan;Choi, Tae Jeong;Choy, Yun Ho;Cho, Kwang Hyun;Choi, You Lim;Cho, Yong Min;Kim, Nae Soo;Lee, Jung Jae
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • This study was conducted to estimate the Genomic Estimated Breeding Value (GEBV) using Genomic Best Linear Unbiased Prediction (GBLUP) method in Hanwoo (Korean native cattle) population. The result is expected to adapt genomic selection onto the national Hanwoo evaluation system. Carcass weight (CW), eye muscle area (EMA), backfat thickness (BT), and marbling score (MS) were investigated in 552 Hanwoo progeny-tested steers at Livestock Improvement Main Center. Animals were genotyped with Illumina BovineHD BeadChip (777K SNPs). For statistical analysis, Genetic Relationship Matrix (GRM) was formulated on the basis of genotypes and the accuracy of GEBV was estimated with 10-fold Cross-validation method. The accuracies estimated with cross-validation method were between 0.915~0.957. In 534 progeny-tested steers, the maximum difference of GEBV accuracy compared to conventional EBV for CW, EMA, BT, and MS traits were 9.56%, 5.78%, 5.78%, and 4.18% respectively. In 3,674 pedigree traced bulls, maximum increased difference of GEBV for CW, EMA, BT, and MS traits were increased as 13.54%, 6.50%, 6.50%, and 4.31% respectively. This showed that the implementation of genomic pre-selection for candidate calves to test on meat production traits could improve the genetic gain by increasing accuracy and reducing generation interval in Hanwoo genetic evaluation system to select proven bulls.

Comparison of Educators and Students' Perception of Evaluation Criteria for Admission to Career and Technical High Schools: A Case Study (특성화고등학교 미래인재전형의 평가기준에 대한 교사와 학생의 인식비교 : 서울시교육청 특성화고 사례를 중심으로)

  • Cho, Sung Ran;Lee, Hwa-Yeong;Han, jiyoon;Ye, Cheol-Hae;Shin, Changho
    • (The)Korea Educational Review
    • /
    • v.24 no.1
    • /
    • pp.227-254
    • /
    • 2018
  • This study examines differences in perception between applicants and admissions committee members regarding evaluation criteria for admission to career and technical high schools in Seoul. This investigation, based on "The survey on policy for career and technical high school admissions," seeks to explore and consider the various criteria for selecting and evaluating students. The target populations of the survey were the educators in charge of admission and freshmen in Seoul career and technical high schools. We report three major findings, with the first pertaining to the existing criteria and policies for admission to career and technical high schools. While educators agreed with the intent and reasoning behind the school's competitive spots, they were overall dissatisfied with the selection method and the lack of a requirement for academic transcripts. Matriculated students, in comparison, expressed greater satisfaction with the existing criteria for admission. Secondly, when assessing the importance of various evaluation components in an application, educators viewed the interview and attendance record as the most valuable components of the application, followed by future plans, personal statement, volunteer work, and portfolio, in order of decreasing importance. Students ranked attendance record, interview, personal statement, portfolio, future plans, and volunteer work as most to least important components of their application. Thus, students regarded the personal statement and portfolios as being of higher priority than did the educators. The last major finding pertained to students' rationale for applying and educators' selection criteria. At the time of application, students focused on aptitude and job prospects after graduation, while educators valued personality and competence. In summary, the applicants' viewpoints and actions aligned much more closely with the mission of the Seoul Metropolitan Office of Education than did those of the educators in charge of admission. Thus, in order to establish a consensus between the policy and mission of career and technical high schools, each career and technical high school should clarify the exact criteria for their ideal candidate. There is also a need to bridge the gap in perception between the applicants and educators regarding selection strategy, to establish a harmonized evaluation criteria. These goals are necessary to attract and recruit talented, bright individuals who will meet the demands of today's society.

An Expert System for the Estimation of the Growth Curve Parameters of New Markets (신규시장 성장모형의 모수 추정을 위한 전문가 시스템)

  • Lee, Dongwon;Jung, Yeojin;Jung, Jaekwon;Park, Dohyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.17-35
    • /
    • 2015
  • Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

Predicting Potential Habitat for Hanabusaya Asiatica in the North and South Korean Border Region Using MaxEnt (MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측)

  • Sung, Chan Yong;Shin, Hyun-Tak;Choi, Song-Hyun;Song, Hong-Seon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.469-477
    • /
    • 2018
  • Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were $778km^2$, and the KBA candidate area identified by taking into account existing protected areas was $1,321km^2$. Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.