• 제목/요약/키워드: cancer-upregulated gene 2

검색결과 49건 처리시간 0.025초

CircCOL1A2 Sponges MiR-1286 to Promote Cell Invasion and Migration of Gastric Cancer by Elevating Expression of USP10 to Downregulate RFC2 Ubiquitination Level

  • Li, Hang;Chai, Lixin;Ding, Zujun;He, Huabo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.938-948
    • /
    • 2022
  • Gastric cancers (GC) are generally malignant tumors, occurring with high incidence and threatening public health around the world. Circular RNAs (circRNAs) play crucial roles in modulating various cancers, including GC. However, the functions of circRNAs and their regulatory mechanism in colorectal cancer (CRC) remain largely unknown. This study focuses on both the role of circCOL1A2 in CRC progression as well as its downstream molecular mechanism. Quantitative polymerase chain reaction (qPCR) and western blot were adopted for gene expression analysis. Functional experiments were performed to study the biological functions. Fluorescence in situ hybridization (FISH) and subcellular fraction assays were employed to detect the subcellular distribution. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), RNA pull-down, and immunofluorescence (IF) and immunoprecipitation (IP) assays were used to explore the underlying mechanisms. Our results found circCOL1A2 to be not only upregulated in GC cells, but that it also propels the migration and invasion of GC cells. CircCOL1A2 functions as a competing endogenous RNA (ceRNA) by sequestering microRNA-1286 (miR-1286) to modulate ubiquitin-specific peptidase 10 (USP10), which in turn spurs the migration and invasion of GC cells by regulating RFC2. In sum, CircCOL1A2 sponges miR-1286 to promote cell invasion and migration of GC by elevating the expression of USP10 to downregulate the level of RFC2 ubiquitination. Our study offers a potential novel target for the early diagnosis and treatment of GC.

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • 제27권4호
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Generation of Renal Cell Carcinoma-specific CD4+/CD8+ T Cells Restricted by an HLA-39 from a RCC Patient Vaccinated with GM-CSF Gene-Transduced Tumor Cells

  • Jun, Do Youn;Moutner, Joseph;Jaffee, Elizabeth
    • IMMUNE NETWORK
    • /
    • 제3권2호
    • /
    • pp.96-102
    • /
    • 2003
  • Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccines induce very potent systemic anti-tumor immunity in preclinical and clinical models. Our previous phase I clinical trial in patients with metastatic renal cell carcinoma (RCC) has demonstrated both immune cell infiltration at vaccine sites and T cell-mediated delayed-type hypersensitivity (DTH) response to whole tumor cell vaccines. Methods: To investigate the immune responses to autologous genetically- modified tumor cell vaccines, tumor-specific $CD8^+$ T cell lines were generated from peripheral blood lymphocytes (PBL) of a RCC patient 1.24 by repeated in vitro stimulation with either B7.1-transduced autologous RCC tumor cells or B7.1-transduced autologous tumor cells treated with interferon gamma ($IFN{\gamma}$), and cloned by limiting dilution. Results: Among several RCC-specific cytotoxic T lymphocytes (CTLs), a $CD4^+/CD8^+$ double positive T cell clone (17/A2) appeared to recognize $IFN{\gamma}$-treated autologous RCC restricted by HLA-B39. The 17/A2 also recognized other HLA-B39 positive RCC tumor cells after $IFN{\gamma}$ treatment. Conclusion: These results demonstrate that autologous RCC vaccination successfully generates the tumor-specific CTL 17/A2, and suggest that the presentation and recognition of the tumor antigen by the 17/A2 might be upregulated by $IFN{\gamma}$.

Radiosensitization Effect of Overexpression of Adenovirus-mediated SIRT6 on A549 Non-small Cell Lung Cancer Cells

  • Cai, Yong;Sheng, Zhao-Ying;Liang, Shi-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7297-7301
    • /
    • 2014
  • Objective: To explore the radiosensitization effect of overexpression of silent information regulator 6 (SIRT6) on A549 non-small cell lung cancer (NSCLC) cells. Methods: Adenovirus vector Ad-SIRT6 causing overexpression of SIRT6 was established. Western blotting and MTT assay were adopted to detect the level of SIRT6 protein and the inhibitory rate of A549 cell proliferation after different concentrations of adenovirus transduction (0, 25, 100, 200, and 400 pfu/cell) for 24 h. Control group, Ad-null group and Ad-SIRT6 group were designed in this experiment and virus concentration of the latter two groups was 200 pfu/cell. Colony formation assays were employed to test survival fraction (SF) of the 3 groups after 0, 2, 4, 6, 8, 10 X-ray irradiation. Flow cytometry was used to detect the status of cell cycle of 3 groups after 48 h of 4Gy X-ray irradiation and Western blotting was used to determine the expression of apoptosis-related genes of 3 groups after 48 h of 4GyX-ray irradiation. Results: In the range of 25~400 pfu/cell, the inhibitory rate of A549 cell proliferation increased as adenovirus concentration raised. The inhibitory rates under the concentrations of 0, 25, 100, 200, and 400 pfu/cell were 0%, $4.23{\pm}0.34%$, $12.7{\pm}2.57%$, $22.6{\pm}3.38%$, $32.2{\pm}3.22%$, $38.7{\pm}4.09%$ and $47.8{\pm}5.58%$ and there were significantly differences among groups (P<0.05). SF in Ad-SIRT6 group was lower than Ad-null and control groups after 4~10Gy X-ray irradiation (P<0.05) and the sensitization enhancement ratio (SER) was 1.35 when compared with control group. Moreover, after 48 h of 4Gy X-ray irradiation, there appeared a significant increase in G1-phase cell proportion, upregulated expression of the level of apoptosis-promoting genes (Bax and Cleaved caspase-3), but a obvious decline in S-phase and G2-phase cell proportion and a significant decrease of the level of apoptosis-inhibiting gene (Bal-2) in the Ad-SIRT6 group (P<0.05). Conclusion: The over-expression of adenovirus-mediated SIRT6, which has radiosensitization effect on A549 cells of NSCLC, can inhibit the proliferation of A549 cells and cause G0/G1 phase retardation as well as induce apoptosis of cells.

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.

Alterations and Co-Occurrence of C-MYC, N-MYC, and L-MYC Expression are Related to Clinical Outcomes in Various Cancers

  • Moonjung Lee;Jaekwon Seok;Subbroto Kumar Saha;Sungha Cho;Yeojin Jeong;Minchan Gil;Aram Kim;Ha Youn Shin;Hojae Bae;Jeong Tae Do;Young Bong Kim;Ssang-Goo Cho
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.215-233
    • /
    • 2023
  • Background and Objectives: MYC, also known as an oncogenic reprogramming factor, is a multifunctional transcription factor that maintains induced pluripotent stem cells (iPSCs). Although MYC is frequently upregulated in various cancers and is correlated with a poor prognosis, MYC is downregulated and correlated with a good prognosis in lung adenocarcinoma. MYC and two other MYC family genes, MYCN and MYCL, have similar structures and could contribute to tumorigenic conversion both in vitro and in vivo. Methods and Results: We systematically investigated whether MYC family genes act as prognostic factors in various human cancers. We first evaluated alterations in the expression of MYC family genes in various cancers using the Oncomine and The Cancer Genome Atlas (TCGA) database and their mutation and copy number alterations using the TCGA database with cBioPortal. Then, we investigated the association between the expression of MYC family genes and the prognosis of cancer patients using various prognosis databases. Multivariate analysis also confirmed that co-expression of MYC/MYCL/MYCN was significantly associated with the prognosis of lung, gastric, liver, and breast cancers. Conclusions: Taken together, our results demonstrate that the MYC family can function not only as an oncogene but also as a tumor suppressor gene in various cancers, which could be used to develop a novel approach to cancer treatment.

방사선에 대한 종양의 반응에서 아포프토시스의 유도와 이에 관련되는 유전자 발현 (Induction of Apoptosis and Expression of Apoptosis-related Gene Products in Response to Radiation in Murine Tumors)

  • 성진실
    • Radiation Oncology Journal
    • /
    • 제15권3호
    • /
    • pp.187-195
    • /
    • 1997
  • 목적 : 세포 독성 인자가 유도하는 아포프토시스에 관한 연구가 대부분 In Vitro 연구에 국한되어온 바, In VIVO에서 방사선에 의한 아포프토시스의 유도와 이에 관여하는 유전자들의 발현 양상을 분석하기 위하여 본 연구를 수행하였다. 대상 및 방법 : 마우스 동종암으로서 방사선 민감 종양인 난소암 (OC3-1)과 내성 종양인 간암 (HCa-1)을 모델로 하여 이들 종양이 평균 직경 8 mm로 자랐을 때 25 Gy의 방사선을 조사하였다. 조사 후 다양한 시간 간격으로 조직을 채취하여 아포프토시스의 유도 수준을 분석하며 동시에 이에 관련된 유전자 산물인 p53, $p21^{wart/cip1}$, bax, bel-2 등의 발현을 western blotting 을 이용하여 분석하였다. 종양의 p53 상태는 polymerase chain reaction-single strand conformation polymorphism assay로 분석하였다. 결과 : 모델 종양들의 p53 상태는 둘다 자연형으로 나타났다. 방사선 조사로 OCa-1에서는 아포프토시스가 유도되었으나 HCa-1에서는 아포프토시스가 관찰되지 않았다. OCa-1에서 방사선 조사로 p53, $p21^{wart/cip1}$의 발현이 증가되었으며 bel-2/ bax 비율은 감소하였다. HCa기에서는 p53, $p21^{wart/cip1}$의 발현이 증가되었으나 $p21^{wart/cip1}$은 OCa-1과 비교하여 증가 수준이 미약하였다. bel-2/bax 비율은 현저히 증가하였다. 이와 같은 변화들은 방사선 조사에 선행되거나 조사 후 수시간 내에 일어났으며 아포프토시스의 유도에 선행하거나 일치하였다. 결론 : 아포프토시스의 진행에는 p53, $p21^{wart/cip1}$의 증가 뿐만 아니라 bel-21 bax 비율의 변화 가 관여된다는 것이 In vivo에서 확인되었다. p53가 자연형인 경우에도 그 이하 단계의 유전자 발현 양상이 다르게 나타날 수 있으며 이는 세포 독성 요인을 이용한 암 치료시 결과를 예측하는데 있어서 단일 유전자 발현의 평가와 연계되는 복잡성을 시사하고 있다.

  • PDF

1,2-Dimethylhydrazine에 의해 유발된 Colonic Aberrant Crypt Foci에 대한 마늘추출물의 암예방효과 (Chemopreventive Effects of Garlic Extracts on Rat Colonic Aberrant Crypt Foci Induced by 1,2-Dimethylhydrazine)

  • 김태명;류재면;권현정;황인국;반정옥;정헌상;홍진태;김대중
    • Toxicological Research
    • /
    • 제23권4호
    • /
    • pp.321-330
    • /
    • 2007
  • Garlic (Allium sativum L.) with the food supplement material and medicine was used traditionally in Asia and Europe. Epidemiological studies revealed that the intake of garlic reduced incidences of various cancer including digestive system. The present study was designed to investigate the effect of garlic ethanol extract on the development of colonic aberrant crypt foci (ACF) induced by 1,2-dimethylhydrazine (DMH) in male F344 rats. Five-week-old rats were given four times for two weeks to subcutaneous injections by DMH (30 mg/kg body weight) to induce ACF. The animals were divided into groups that fed diet containing garlic ethanol extract at five different doses (0.1, 0.2, 0.5, 2, 5%), respectively, animals were evaluated for the total number of ACF and total aberrant crypts (AC) per colon detected from methylene blue-stained rat colon. ACF were formed in animals in DMH-treated group. The feeding suppressed potently the appearance ACF in the colon of rats. Especially, fed diet containing garlic ethanol extract at intermediate dose (0.5%) significantly reduced the number of ACF and AC per colon (p < 0.05). Garlic ethanol extract inhibited DMH-induced overexpression of Activator Protein-1 (AP-1) and ${\beta}-catenin$ genes related to cell proliferation that also upregulated the expression of p21Waf1/Cip1 mRNA, a cell cycle-regulating gene. These results suggested that garlic ethanol extract may inhibit ACF formation, ${\beta}-catenin$ gene as the early preneoplastic marker of malignant potential in the process of colon carcinogenesis.

대장암 세포주에서 주박 추출물의 유기용매 분획물의 항성장 활성 (Anti-proliferative Activities of Solvent Fractions of Lees Extracts in Human Colorectal HCT116 Cells)

  • 강형택;이승훈;김순영;김미선;신우창;손호용;김종식
    • 생명과학회지
    • /
    • 제24권9호
    • /
    • pp.967-972
    • /
    • 2014
  • 본 연구는 한국 고유의 전통주인 막걸리 제조시 생성되는 주박 추출물과 유기용매 분획물을 총 85종 분리하여, 이들의 대장암 세포주에 대한 항성장 활성과 활성기전을 연구하였다. 이들 중 세포생존율 연구결과에 따라 3가지 종류의 분획물(KSD-E1-3, KSD-E2-3, KSD-E4-3)을 선별하였다. 이 중 가장 활성이 높은 KSD-E1-3 분획물에 의한 유전체 수준에서의 유전자 발현변화를 확인하기 위하여 oligo DNA microarray 실험을 수행하였다. 그 결과, 2배이상 발현이 증가된 유전자들 가운데 항암 유전자인 NAG-1, ATF3, DDIT3 그리고 p21을 선별하여 추가 실험을 진행하였다. 세포생존율 결과에 따라 선별된 3가지 종류의 분획물(KSD-E1-3, KSD-E2-3 그리고 KSD-E4-3)에 의한 4가지 종류의 유전자의 발현을 확인한 결과, KSD-E1-3에 의하여 모든 유전자의 발현이 높게 증가되었다. KSD-E1-3에 의한 유전자의 발현이 전사조절인자 p53에 의존적인지 확인하고자 p53 null HCT116 세포주를 이용하여 RT-PCR한 결과, NAG-1, ATF3, 그리고 DDIT3 유전자 p53에 비의존적이었으며, 반면 p21 유전자는 p53에 의해서만 발현이 증가되는 것을 확인하였다. 이러한 연구 결과는 주박 추출물이 다양한 기작에 의해 항암 유전자의 발현을 유도함으로써 암 세포에 대한 항성장 활성을 보여주고 있음을 나타낸다.