• Title/Summary/Keyword: cancer-upregulated gene 2

Search Result 48, Processing Time 0.027 seconds

Cancer-Upregulated Gene 2 (CUG2), a New Component of Centromere Complex, Is Required for Kinetochore Function

  • Kim, Hyejin;Lee, Miae;Lee, Sunhee;Park, Byoungwoo;Koh, Wansoo;Lee, Dong Jun;Lim, Dae-Sik;Lee, Soojin
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • We previously identified cancer-upregulated gene 2 (CUG2) as a commonly up-regulated gene in various human cancer tissues, especially in ovary, liver, and lung (Lee et al., 2007a). CUG2 was determined to be a nuclear protein that exhibited high proto-oncogenic activities when overexpressed in NIH3T3 mouse fibroblast cells. To identify other cellular functions of CUG2, we performed yeast two-hybrid screening and identified CENP-T, a component of CENP-A nucleosome complex in the centromere, as an interacting partner of CUG2. Moreover, CENP-A, the principle centromeric determinant, was also found in complex with CENP-T/CUG2. Immunofluorescent staining revealed the co-localization of CUG2 with human centromeric markers. Inhibition of CUG2 expression drastically affected cell viability by inducing aberrant cell division. We propose that CUG2 is a new component of the human centromeric complex that is required for proper chromosome segregation during mitosis.

Expression of HERV-HX2 in Cancer Cells and Human Embryonic Stem Cells

  • Jung, Hyun-Min;Choi, Seoung-Jun;Kim, Se-Hee;Moon, Sung-Hwan;Yoo, Jung-Ki;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.

Establishment and Partial Characterization of an Epirubicin-Resistant Gastric Cancer Cell Line with Upregulated ABCB1

  • Felipe, Aledson Vitor;Moraes, Andrea Aparecida;de Oliveira, Juliana;da Silva, Tiago Donizetti;Forones, Nora Manoukian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6849-6853
    • /
    • 2014
  • Multidrug resistance (MDR) is a major impediment to successful chemotherapy of gastric cancer. Our aim was to establish an epirubicin-resistant cell subline (AGS/EPI) and to elucidate the mechanisms involved in acquired EPI resistance. The AGS/EPI cell subline developed by exposing parental AGS cells to stepwise increasing concentrations of EPI demonstrated 2.52-fold resistance relative to the AGS cell line, and mRNA expression of the ATP-dependent drug-efflux pump P-glycoprotein (Pgp), more recently known as ABCB1 protein, was similarly upregulated. An AGS/EPI cell subline could thus be effectively established, and MDR mechanism of these cells was shown to be related to the overexpression of mRNA of the ABCB1 gene.

The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes (CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도)

  • Yawut, Natpaphan;Kim, Namuk;Budluang, Phatcharaporn;Cho, Il-Rae;Kaowinn, Sirichat;Koh, Sang Seok;Kang, Ho Young;Chung, Young-Hwa
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.271-278
    • /
    • 2022
  • The detailed mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. The downregulation of FBXW7 E3 ligase, a tumor suppressor known for its proteolytic regulation of oncogenic proteins such as cyclin E, c-Myc, Notch, and Yap1, has been frequently reported in several types of tumor tissues, including those in the large intestine, cervix, and stomach. Therefore, we investigated whether FBXW7 is involved in CUG2-induced oncogenesis. In this study, the decreased expression of FBXW7 was examined in human lung adenocarcinoma A549 (A549-CUG2) and human bronchial BEAS-2B cells (BEAS-CUG2) overexpressing CUG2 and compared with control cells stably expressing an empty vector (A549-Vec or BEAS-Vec). Treatment with MG132 (a proteosome inhibitor) prevented the degradation of FBXW7 and Yap1 proteins, which are substrates of the FBXW7 E3 ligase. To address the role of Fbxw7 in the development of cancer stem cell (CSC) phenotypes, we suppressed Fbxw7 protein levels using its siRNA. We observed that decreased levels of FBXW7 enhanced cell migration, invasion, and spheroid size and number in A549-Vec and BEAS-Vec cells. The enforced expression of FBXW7 produced the opposite results in A549-CUG2 and BEAS-CUG2 cells. Furthermore, the downregulation of FBXW7 elevated the activities of EGFR, Akt, and ERK1/2 and upregulated β-catenin, Yap1, and NEK2, while the enforced expression of FBXW7 generated the opposite results. We thus propose that FBXW7 downregulation induced by CUG2 confers CSC-like phenotypes through the upregulation of both the EGFR-ERK1/2 and β-catenin-Yap1-NEK2 signaling pathways.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Expression of the C1orf31 Gene in Human Embryonic Stem Cells and Cancer Cells

  • Ahn, Jin-Seop;Moon, Sung-Hwan;Yoo, Jung-Ki;Jung, Hyun-Min;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.223-227
    • /
    • 2008
  • Human embryonic stem (ES) cells retain the capacity for self-renewal, are pluripotent and differentiate into the three embryonic germ layer cells. The regulatory transcription factors Oct4, Nanog and Sox2 play an important role in maintaining the pluripotency of human ES cells. The aim of this research was to identify unknown genes upregulated in human ES cells along with Oct4, Nanog, and Sox2. This study characterizes an unknown gene, named chromosome 1 open reading frame 31 (C1orf31) mapping to chromosome 1q42.2. The product of C1orf31 is the hypothetical protein LOC388753 having a cytochrome c oxidase subunit VIb (COX6b) motif. In order to compare expression levels of C1orf31 in human ES cells, human embryoid body cells, vascular angiogenic progenitor cells (VAPCs), cord-blood endothelial progenitor cells (CB-EPCs) and somatic cell lines, we performed RT-PCR analysis. Interestingly, C1orf31 was highly expressed in human ES cells, cancer cell lines and SV40-immortalized cells. It has a similar expression pattern to the Oct4 gene in human ES cells and cancer cells. Also, the expression level of C1orf31 was shown to be upregulated in the S phase and early G2 phase of synchronized HeLa cells, leading us to purpose that it may be involved in the S/G2 transition process. For these reasons, we assume that C1orf31 may play a role in on differentiation of human ES cells and carcinogenesis.

TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G1- to S-phase transition

  • Wang, Yi-Dong;Bian, Guo-Hui;Lv, Xiao-Yan;Zheng, Rong;Sun, Huan;Zhang, Zheng;Chen, Ye;Li, Qin-Wei;Xiao, Yan;Yang, Qiu-Tan;Ai, Jian-Zhong;Wei, Yu-Quan;Zhou, Qin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.733-738
    • /
    • 2008
  • Although previous studies have implicated a role for TC1 (C8orf4) in cancer cell proliferation, the molecular mechanism of its action is still largely unclear. In this study, we showed, for the first time, that the mRNA levels of TC1 were upregulated by mitogens (FBS/thrombin) and at least partially, through the ERK1/2 signaling pathway. Interestingly, the over-expression of TC1 promoted the $G_1$- to S-phase transition of the cell cycle, which was delayed by the deficiency of ERK1/2 signaling in fibroblast cells. Furthermore, the luciferase reporter assay indicated that the over-expression of TC1 significantly increased Cyclin D1 promoter-driven luciferase activity. Taken together, our findings revealed that TC1 was involved in the mitogen-activated ERK1/2 signaling pathway and positively regulated $G_1$- to S-phase transition of the cell cycle. Our results may provide a novel mechanism of the role of TC1 in the regulation of cell proliferation.

Unusual Intronic Variant in GSTP1 in Head and Neck Cancer in Pakistan

  • Masood, Nosheen;Malik, Faraz Arshad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1683-1686
    • /
    • 2012
  • In the present case control study mRNA expression of the GSTP1 gene, encoding a phase II enzyme that detoxifies via glutathione conjugation, was investigated using semiquantitative PCR followed by SSCP for 49 confirmed head and neck (HN) cancer and 49 control samples. It was found that GSTP1 was upregulated in significantly higher number of cancers (OR 4.2, 95% CI 1.2-15.3). Grade wise correlation was also observed with more up regulation in patients with more advanced grades of HN carcinomas. We also found that 5 patients showed variation in mRNA with a larger product size than expected. Sequencing revealed insertion of an intronic segment between the $6^{th}$ and $7^{th}$ exon of the GSTP1 gene. Germline screening was performed showing mobility shifts which suggested mutation at the DNA level resulting in intronic portion retention. This study is of prime importance for drug design and treatment selection to overcome increased resistance of HN cancers to drugs due to alteration in the GSTP1 gene.

Effect of MUC1 siRNA on Drug Resistance of Gastric Cancer Cells to Trastuzumab

  • Deng, Min;Jing, Da-Dao;Meng, Xiang-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.127-131
    • /
    • 2013
  • Trastuzumab is the first molecular targeting drug to increase the overall survival rate in advanced gastric cancer. However, it has also been found that a high intrinsic or primary trastuzumab resistance exists in some proportion of gastric cancer patients. In order to explore the mechanism of resistance to trastuzumab, firstly we investigated the expression of MUC1 (membrane-type mucin 1) in gastric cancer cells and its relationship with drug-resistance. Then using gene-silencing, we transfected a siRNA of MUC1 into drug-resistant cells. The results showed the MKN45 gastric cell line to be resistant to trastuzumab, mRNA and protein expression of MUC1 being significantly upregulated. After transfection of MUC1 siRNA, protein expression of MUC1 in MKN45cells was significantly reduced. Compared with the junk transfection and blank control groups, the sensitivity to trastuzumab under MUC1 siRNA conditions was significantly increased. These results imply that HER2-positive gastric cancer cell MKN45 is resistant to trastuzumab and this resistance can be cancelled by silencing expression of the MUC1 gene.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.