• Title/Summary/Keyword: cancer metastasis inhibitor

Search Result 124, Processing Time 0.029 seconds

Anti-tumorigenic and Invasive Activity of Colon Cancer Cells Transfected with the Retroviral Vector Encoding Tissue Inhibitor of Metalloproteinase-2 (레트로바이러스를 이용한 Tissue Inhibitor of Metalloproteinase-2 유전자 발현이 대장암 세포의 전이 및 종양형성에 미치는 영향)

  • 오일웅;정자영;장석기;이수해;김연수;손여원
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) playa key role in tumor invasion and metastasis. As an inhibitor of MMP-2, TIMP-2 is known to block both the invasive and metastatic behavior of cancer cells, and decrease tumor growth activity. We performed this study to investigate the effects of TIMP-2 over-expression induced by retroviral mediated gene transfer in vitro and in vivo. The human colon cancer cell line SW480 was transfected with the retroviral vector encoding TIMP-2. The effects of TIMP-2 over-expression were analyzed by invasion assay and gelatinase activity test in colon cancer cells and tumorigencity in nude mice. In evaluation of the transfection efficiency of the retroviral vector encoding TIMP-2 in colon cancer cells, we confirmed up-regulation of TIMP-2 expression dependent on the time of cell culture. In addition, inhibition of MMP-2 expression in SW480/TIMP-2 was shown by gelatin zymography. In the in vitro invasion assay SW480/TIMP-2 inhibited the invasiveness on matrigel coated with collagen. To determine whether TIMP-2 can modulate in vivo tumorigenicity and metastasis, SW480/TIMP-2 cells were injected subcutaneously in nude mice. The tumor mass formation of SW480/TIMP-2 cells in nude mice was markedly decreased compared to nontransfected cancer cells. These results showed that colon cancer cells transfected with the retroviral vector encoding TIMP-2 inhibits the invasiveness in vitro and tumorigenicity in vivo.

Inhibitory effect of DA-125 on cancer metastasis by downregulating MMPs and CAMs

  • Park, Hyen-Joo;Hwang, Hye-Jin;Kim, Won-Bae;Kim, Soon-Hoe;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.68.3-69
    • /
    • 2003
  • Matrix metalloproteinases (MMPs) play an important role in tumor invasion and metastasis by extracellular matrix degradation. To analyze the effect of DA-125, a anthracyclin derivative, on the invasion or metastasis of cancer cells the expression of matrix metalloproteases (MMPs) was investigated in human fibrosarcoma HTl080 cells by RT-PCR or gelatin zymographic methods. As result, DA-125 suppressed the expression of MMP-2 and 9 as well as tissue inhibitor of metalloproteinase-1 (TIMP-1) TIMP-2 and MT1-MMP with a time- and dose-dependent manner. Inaddition, DA-125 inhibited cancer cell migration and colony formation, and also exhibited the inhibitory activities of invasion and motility with a matrigel and type I collagen assay. (omitted)

  • PDF

Chemoquiescence with Molecular Targeted Ablation of Cancer Stem Cells in Gastrointestinal Cancers

  • Jong-Min Park;Young-Min Han;Migyeong Jeong;Eun Jin Go;Napapan Kangwan;Woo Sung Kim;Ki Baik Hahm
    • Journal of Digestive Cancer Research
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The abundance of multi-drug resistance ATPase binding cassette and deranged self-renewal pathways shown in cancer stem cells (CSCs) played a crucial role in tumorigenesis, tumor resistance, tumor recurrence, and tumor metastasis. Therefore, elucidation of CSCs biology can improve diagnosis, enable targeted treatment, and guide the follow up of GI cancer patients. In order to achieve chemoquiescence, seizing cancer through complete ablation of CSCs, CSCs are rational targets for the design of interventions that will enhance responsiveness to traditional therapeutic strategies and contribute in the prevention of local recurrence as well as metastasis. However, current cancer treatment strategies fail to either detect or differentiate the CSCs from their non-tumorigenic progenies mostly due to the absence of specific biomarkers and potent agents to kill CSCs. Recent advances in knowledge of CSCs enable to produce several candidates to ablate CSCs in gastrointestinal (GI) cancers, especially cancers originated from inflammation-driven mutagenesis such as Barrett's esophagus (BE), Helicobacter pylori-associated gastric cancer, and colitis-associated cancer (CAC). Our research teams elucidated through revisiting old drugs that proton pump inhibitor (PPI) and potassium competitive acid blocker (p-CAB) beyond authentic acid suppression, chloroquine for autophage inhibition, sonic hedgehog (SHH) inhibitors, and Wnt/β-catenin/NOTCH inhibitor can ablate CSCs specifically and efficiently. Furthermore, nanoformulations of these molecules could provide an additional advantage for more selective targeting of the pathways existing in CSCs just like current molecular targeted therapeutics and sustained action, while normal stem cells intact. In this review article, the novel approach specifically to ablate CSCs existing in GI cancers will be introduced with the introduction of explored mode of action.

  • PDF

The Effects of HangAmDan(HAD) on Anti-Metastasis and Preventing Relapses, Administered to 69 Cancer Patients (각종 암환자 69례에 대한 항암단의 항전이 및 재발억제효과)

  • Lee, Yong-Yeon;Song, Kee-Cheol;Choi, Byung-Lyul;Seo, Sang-Hoon;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan;Yoo, Hwa-Seung
    • The Journal of Internal Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2002
  • Purpose : Among numerous biological symptoms of cancer, matrix metalloproteinases (MMPs) are essential for tumor invasion and metastasis. HAD is used as an inhibitor of MMP gene. This study was designed to evaluate the effects of HAD on anti metastasis and preventing recurrence in cancer patients. Materials and Methods : We retrospectively analyzed the medical records of 69 cancer patients who had been administered with HAD for over 12 months continuously in East-West Cancer Center of Oriental Hospital of Daejeon University, from January 1993 to May 2002. Results : We analyzed gender, portion, stage and anti-metastasis & recurrence rates of cancer patients. Analysis of sex cases showed that the percentage of male is 62.3%, female is 37.7%. Analysis of cancer portion showed that the percentage of stomach is 31.9%, colorectum is 26.1%, lung is 21.7%, liver is 8.7%, breast is 8.7% Analysis of stage showed that the rate of III is 78.3%, IV is 13.0% and II is 8.7%. Analysis of anti-metastasis and recurrence rates showed that colorectal cancer is 77.8%, stomach cancer is 63.6%, lung cancer is 33.4% and breast cancer is 33.3% (mean : 53.6%). Conclusions : HAD has significant effects on anti-metastasis and preventing recurrence of tumor on cancer patients. So it helps to prolong the survival rates of cancer patients.

  • PDF

miR-200a Overexpression in Advanced Ovarian Carcinomas as a Prognostic Indicator

  • Zhu, Cheng-Liang;Gao, Guo-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8595-8601
    • /
    • 2014
  • Background: miR-200a expression is frequently altered in numerous cancers. The aim of the present study was to determine the role of microRNA-200a in advanced ovarian carcinomas. Materials and Methods: We measured miR-200a expression in 72 matched normal ovarian tissues and advanced ovarian carcinomas, and also two ovarian carcinoma cell lines (SKOV3 and SKOV3.ip1 - the latter being more invasive and metastatic than the parental SKOV3) by stem-loop real-time RT-PCR based on TaqMan microRNA assay using U6 as a reference. Levels of miR-200a expression were compared by disease stage, tumor grade, histology, and lymph node involvement. To evaluate the role of microRNA-200a, cell proliferation and invasion of SKOV-3 and SKOV-3.ip1 were analyzed with miR-200a inhibitor/mimic transfected cells. Results: Of 72 paired samples, 65 cancer tissues overexpressed microRNA-200a greater than two fold in comparison with matched normal epithelium. Specifically, patients with lymph node metastasis showed significant elevation. The level correlated with clinicopathological features, including high tumor grade, late disease stage, most notably with lymph node metastasis, but not with tumor histology. In addition, SKOV-3.ip1 cells also overexpressed miR-200a compared with SKOV-3, and miR-200a inhibitor transfected SKOV-3.ip1 cells showed significant reduction in cellular proliferation and invasion, while a miR-200a mimic stimulated the opposite behavior. Conclusions: We provide definitive evidence that miR-200a is up-regulated in a significant proportion of advanced ovarian carcinomas, and that elevated miR-200a expression facilitates tumor progression. Our findings support the notion that miR-200a is an onco-microRNA for ovarian cancer, and elevation is a useful potential diagnostic indicator. This study also provides a solid basis for further functional analysis of miR-200a in advanced ovarian cancer.

Anti-Tumor Effect of IDF-11774, an Inhibitor of Hypoxia-Inducible Factor-1, on Melanoma

  • Kim, Nan-Hyung;Jeong, Jong Heon;Park, Yu Jeong;Shin, Hui Young;Choi, Woo Kyoung;Lee, Kyeong;Lee, Ai-Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.465-472
    • /
    • 2022
  • Melanoma is one of the most aggressive skin cancers. Hypoxia contributes to the aggressiveness of melanoma by promoting cancer growth and metastasis. Upregulation of cyclin D1 can promote uncontrolled cell proliferation in melanoma, whereas stimulation of cytotoxic T cell activity can inhibit it. Epithelial mesenchymal transition (EMT) plays a critical role in melanoma metastasis. Hypoxia-inducible factor-1α (HIF-1α) is a main transcriptional mediator that regulates many genes related to hypoxia. CoCl2 is one of the most commonly used hypoxia-mimetic chemicals in cell culture. In this study, inhibitory effects of IDF-11774, an inhibitor of HIF-1α, on melanoma growth and metastasis were examined using cultured B16F10 mouse melanoma cells and nude mice transplanted with B16F10 melanoma cells in the presence or absence of CoCl2-induced hypoxia. IDF-11774 reduced HIF-1α upregulation and cell survival, but increased cytotoxicity of cultured melanoma cells under CoCl2-induced hypoxia. IDF-11774 also reduced tumor size and local invasion of B16F10 melanoma in nude mice along with HIF-1α downregulation. Expression levels of cyclin D1 in melanoma were increased by CoCl2 but decreased by IDF-11774. Apoptosis of melanoma cells and infiltration of cytotoxic T cells were increased in melanoma after treatment with IDF-11774. EMT was stimulated by CoCl2, but restored by IDF11774. Overall, IDF-11774 inhibited the growth and metastasis of B16F10 melanoma via HIF-1α downregulation. The growth of B16F10 melanoma was inhibited by cyclin D1 downregulation and cytotoxic T cell stimulation. Metastasis of B16F10 melanoma was inhibited by EMT suppression.

$\beta$-Glucuronidase Inhibitory Activity of Bromophenols Purified from Grateloupia elliptica

  • Kim, Keun-Young;Choi, Kwan-Sik;Kurihara, Hideyuki;Kim, Sang-Moo
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1110-1114
    • /
    • 2008
  • $\beta$-Glucuronidases of intestinal bacteria are capable of retoxifying compounds that have been detoxified by liver glucuronidation, which is one of the most important detoxication processes in the liver. Therefore, this enzyme is known to accelerate colon cancer invasion and metastasis. Two bromophenols, 2,4,6-tribromophenol (I) and 2,4-dibromophenol (II), were purified from the red alga Grateloupia elliptica. $IC_{50}$ values of bromophenol I and II against Escherichia coli $\beta$-glucuronidase were 5.4 and 8.5 mg/mL, respectively. Hence, bromophenols of G. elliptica, a potent $\beta$-glucuronidase inhibitor, can be used as a novel pharmaceutical agent for the prevention and treatment of colon cancer.

Skin-Related Toxicity of Tyrosine Kinase Inhibitor in Thyroid Cancer (갑상선암에서 표적치료항암제의 피부 관련 부작용)

  • Lim, Dong-Jun
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.82-87
    • /
    • 2018
  • Skin-related toxicity is one of the most important adverse events from multi-target tyrosine kinase inhibitor (MTKI) to treat radioiodine refractory thyroid cancer. As hand foot skin reaction can limit quality of life and therapeutic effectiveness, it is essential to cope with a variety of severity of skin-related toxicity induced by MTKI. Herein, we will discuss two representative cases of skin-related toxicities which were managed by discontinuation/reduction of therapeutic doses of MTKI and were treated by proper medication in thyroid cancer patients with distant metastasis.

Identification of ANXA1 as a Lymphatic Metastasis and Poor Prognostic Factor in Pancreatic Ductal Adenocarcinoma

  • Liu, Qing-Hua;Shi, Mei-Lin;Bai, Jin;Zheng, Jun-Nian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2719-2724
    • /
    • 2015
  • Objective: The aim of this study was to investigate the clinical significance of annexin a1 (ANXA1) and provide molecular evidence to support that decreased ANXA1 expression could enhance cancer migration and invasion in pancreatic ductal adenocarcinoma (PDAC). Materials and Methods: Immunohistochemistry of a tissue microarray with 162 surgically resected PDAC specimens was performed to examine the expression of ANXA1. We also investigated the relationship between ANXA1 expression and clinicopathological factors and prognosis of PDAC patients. We further studied the role of ANXA1 in PDAC cell proliferation, migration and invasion by cell proliferation assay, migration assay and matrigel invasion assay with reduced ANXA1 expression by RNAi. Western blotting was used to detect matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression. We also detected MMP-9 enzyme activity by gelatin zymography. Results: Decreased expression of ANXA1 was significantly associated with poor differentiation, lymph node metastasis and advanced TNM stage of PDAC patients (p<0.05). Moreover, decreased expression of ANXA1 was correlated with poor survival (p<0.05). Furthermore, we found that ANXA1 knockdown inhibited cell proliferation, induced G1 phase cell cycle arrest, increased PDAC cell migration and invasion capacity compared with controls. In addition, Western blotting showed that ANXA1 knockdown increased the MMP-9 protein level and decreased TIMP-1 expression. Gelatin zymography showed that MMP-9 enzyme activity was also elevated. Conclusions: Negative ANXA1 expression is a most unfavorable prognostic factor for PDAC patients. ANXA1 knockdown inhibits cell proliferation by inducing G1 phase cell cycle arrest and increases migration and invasion of PDAC cells through up-regulating MMP-9 expression and activity, implying that ANXA1 may serve as a promising prognostic biomarker and therapeutic target for PDAC.

MiR-371 promotes proliferation and metastasis in hepatocellular carcinoma by targeting PTEN

  • Wang, Hao;Zhao, Yi;Chen, Tingsong;Liu, Guofang;He, Nan;Hu, Heping
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.312-317
    • /
    • 2019
  • Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. MiR-371 has recently emerged as an important regulator in tumorigenesis, and may serve as a biomarker for malignant tumors. We transfected miR-371 or its inhibitor in two human HCC cell lines, then used 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, soft agar colony formation, and transwell migration assays to evaluate the effects on cell proliferation, migration, and invasion. We found that miR-371 was positively correlated with HCC metastasis and poor prognosis in the inflicted patients, and the high expression of miR-371 was promoted, whereas a low level of miR-371 depressed cell proliferation and invasion. We found PTEN to be a direct target of miR-371. The overexpression or knockdown of PTEN exhibited the opposite effects from those of miR-371 on cell proliferation and migration. Our study demonstrates that miR-371 promotes proliferation and metastasis in HCC by targeting PTEN.