Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide.
피부암은 세계에서 가장 흔한 질병 중 하나로 국내에선 발병률이 지난 5년 동안 약 100%가 증가했고 미국에선 매년 500만여 명이 피부암을 진단받는다. 피부암은 주로 자외선의 노출로 피부 조직이 오랜 시간 손상되면서 발생하게 된다. 피부암의 악성종양인 흑색종은 피부 위에서 발생하는 멜라닌 세포 모반과 생김새가 유사해 2차 징후가 발생하지 않는 한 일반인이 자각하기 어려운 점이 있다. 본 논문에서는 이러한 피부암의 조기 발견과 분류를 위해 피부암 병변 윤곽선 검출 알고리즘과 피부암 병변 분류를 수행하는 딥러닝 모델인 CRNN을 제안한다. 실험 결과 본 논문에서 제안하는 윤곽선 검출 알고리즘을 이용할 시 분류 정확도가 97%로 가장 높은 정확도를 보였고 Canny 알고리즘의 경우 78%를 보였고 Sobel의 경우 55%, Laplacian의 경우 46%를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권1호
/
pp.68-80
/
2013
Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.
유방암은 그 조기 발견이 암환자의 사망률을 줄이는 데 있어서 가장 중요한 요소임을 알려져 있다. 스크리닝 검사에 의해 발견되는 유방암의 20%정도를 차지하는 DCIS(ductal carcinoma in situ)의 경우 미세석회화만이 필름 상에서 볼 수 있는 유일한 소견이다. 따라서 미세석회화를 발견하고 그 형태와 분포의 분석을 통한 진단이 암의 조기 발견에 매우 중요하다. 이 검출과정을 자동화하려는 시도가 디지털 영상처리 기술의 관심이 되어 왔다. 본 연구에서는 상관계수를 특징(feature)으로 사용하여 성능을 향상시킨 통계적 패턴 분류법을 제안하였다. 결과적인 검출율은 통계적 문턱치 설정에 의한 이진호 방법과 비교하여 48%에서 83%로 향상되었다. 성능은 TP와 FP로 평가되었으며 클래스 구분시의 오차도 함께 나타내었다.
International Journal of Internet, Broadcasting and Communication
/
제16권1호
/
pp.124-131
/
2024
Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.
Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
Asian Pacific Journal of Cancer Prevention
/
제15권24호
/
pp.10573-10576
/
2015
Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.
Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.
In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.
Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.
유방암은 전체 여성의 암환자 중 두 번째로 많으며, 여성의 암으로 인한 사망 원인으로 가장 높은 것으로 나타났다. 유방암은 조기 발견 경우 완치율이 92%에 이른다. 하지만, 조기 발견을 하지 못할 경우 유방암은 전이율이 매우 높다. 암세포의 전이는 암의 진행이 많이 될수록 다른 장기로의 전이가 더욱 잘 되는 것으로 나타났다. 암의 조기 진단은 삶의 질을 높일 수 있는 중요한 요소이다. 유방암을 검사하는 방법으로는 맘모그래피(Mammography), 초음파, 맘모톰(momotome) 등이 있다. 그 중 맘모그래피는 검사자에게 통증이 적을 뿐 아니라, 쉽게 접근할 수 있어 유방암 검사에 유용하게 사용된다. 본 논문에서는 유방암 진단 데이터로 맘모그래프 데이터를 사용하였다. 본 논문에서는 뉴럴네트워크인 NEWFM(Neural network with weighted fuzzy membership function)를 사용하여 암 조기 진단을 위한 클래스를 분류하였다. NEWFM을 이용하여 데이터를 학습시킨 후 유방암 데이터 분류 결과 정확도가 84.4391%가 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.