• 제목/요약/키워드: cancer detection and classification

검색결과 70건 처리시간 0.032초

Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman

  • Mirzal, Andri;Chaudhry, Shafique Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2375-2382
    • /
    • 2016
  • Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide.

피부암 병변 분류를 위한 SCLC-Edge 검출 알고리즘 (SCLC-Edge Detection Algorithm for Skin Cancer Classification)

  • 박준영;김창민;박찬홍
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.256-263
    • /
    • 2022
  • 피부암은 세계에서 가장 흔한 질병 중 하나로 국내에선 발병률이 지난 5년 동안 약 100%가 증가했고 미국에선 매년 500만여 명이 피부암을 진단받는다. 피부암은 주로 자외선의 노출로 피부 조직이 오랜 시간 손상되면서 발생하게 된다. 피부암의 악성종양인 흑색종은 피부 위에서 발생하는 멜라닌 세포 모반과 생김새가 유사해 2차 징후가 발생하지 않는 한 일반인이 자각하기 어려운 점이 있다. 본 논문에서는 이러한 피부암의 조기 발견과 분류를 위해 피부암 병변 윤곽선 검출 알고리즘과 피부암 병변 분류를 수행하는 딥러닝 모델인 CRNN을 제안한다. 실험 결과 본 논문에서 제안하는 윤곽선 검출 알고리즘을 이용할 시 분류 정확도가 97%로 가장 높은 정확도를 보였고 Canny 알고리즘의 경우 78%를 보였고 Sobel의 경우 55%, Laplacian의 경우 46%를 보였다.

Automatic Sputum Color Image Segmentation for Lung Cancer Diagnosis

  • Taher, Fatma;Werghi, Naoufel;Al-Ahmad, Hussain
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권1호
    • /
    • pp.68-80
    • /
    • 2013
  • Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.

통계적 패턴 분류법과 패턴 매칭을 이용한 유방영상의 미세석회화 검출 (Detection of Mammographic Microcalcifications by Statistical Pattern Classification 81 Pattern Matching)

  • 양윤석;김덕원;김은경
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.357-364
    • /
    • 1997
  • 유방암은 그 조기 발견이 암환자의 사망률을 줄이는 데 있어서 가장 중요한 요소임을 알려져 있다. 스크리닝 검사에 의해 발견되는 유방암의 20%정도를 차지하는 DCIS(ductal carcinoma in situ)의 경우 미세석회화만이 필름 상에서 볼 수 있는 유일한 소견이다. 따라서 미세석회화를 발견하고 그 형태와 분포의 분석을 통한 진단이 암의 조기 발견에 매우 중요하다. 이 검출과정을 자동화하려는 시도가 디지털 영상처리 기술의 관심이 되어 왔다. 본 연구에서는 상관계수를 특징(feature)으로 사용하여 성능을 향상시킨 통계적 패턴 분류법을 제안하였다. 결과적인 검출율은 통계적 문턱치 설정에 의한 이진호 방법과 비교하여 48%에서 83%로 향상되었다. 성능은 TP와 FP로 평가되었으며 클래스 구분시의 오차도 함께 나타내었다.

  • PDF

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.

A Novel Model for Smart Breast Cancer Detection in Thermogram Images

  • Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10573-10576
    • /
    • 2015
  • Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.

Use of DNA Methylation for Cancer Detection and Molecular Classification

  • Zhu, Jingde;Yao, Xuebiao
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.135-141
    • /
    • 2007
  • Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출 (Automated Prostate Cancer Detection on Multi-parametric MR imaging via Texture Analysis)

  • 김영지;정주립;홍헬렌;황성일
    • 한국멀티미디어학회논문지
    • /
    • 제19권4호
    • /
    • pp.736-746
    • /
    • 2016
  • In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.

Melanoma Classification Using Log-Gabor Filter and Ensemble of Deep Convolution Neural Networks

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1203-1211
    • /
    • 2022
  • Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.

뉴럴네트워크 기반의 유방암 조기 진단을 위한 분류 (Classification for early diagnosis for breast cancer base on Neural Network)

  • 윤희진
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.49-53
    • /
    • 2017
  • 유방암은 전체 여성의 암환자 중 두 번째로 많으며, 여성의 암으로 인한 사망 원인으로 가장 높은 것으로 나타났다. 유방암은 조기 발견 경우 완치율이 92%에 이른다. 하지만, 조기 발견을 하지 못할 경우 유방암은 전이율이 매우 높다. 암세포의 전이는 암의 진행이 많이 될수록 다른 장기로의 전이가 더욱 잘 되는 것으로 나타났다. 암의 조기 진단은 삶의 질을 높일 수 있는 중요한 요소이다. 유방암을 검사하는 방법으로는 맘모그래피(Mammography), 초음파, 맘모톰(momotome) 등이 있다. 그 중 맘모그래피는 검사자에게 통증이 적을 뿐 아니라, 쉽게 접근할 수 있어 유방암 검사에 유용하게 사용된다. 본 논문에서는 유방암 진단 데이터로 맘모그래프 데이터를 사용하였다. 본 논문에서는 뉴럴네트워크인 NEWFM(Neural network with weighted fuzzy membership function)를 사용하여 암 조기 진단을 위한 클래스를 분류하였다. NEWFM을 이용하여 데이터를 학습시킨 후 유방암 데이터 분류 결과 정확도가 84.4391%가 나타났다.