• 제목/요약/키워드: cancer chemoprevention

Search Result 242, Processing Time 0.023 seconds

Effect of ω3-Fatty Acid Desaturase Gene Expression on Invasion and Tumorigenicity in Human Tongue Squamous Cell Carcinoma Cells (인체 혀의 편평세포암 세포에서 ω3-fatty acid desaturase 유전자 발현이 침윤 및 종양형성에 미치는 영향)

  • Hong, Tae-Hwa;Shin, Soyeon;Han, Seung-Hyeon;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.945-954
    • /
    • 2018
  • Omega-3 polyunsaturated fatty acids (${\omega}3$-fatty acid) have been found to possess anticancer properties in a variety of cancer cell lines and animal models, but their effects in human tongue squamous cell carcinomas (SCCs) remain unclear. This study was designed to examine the effect of ${\omega}3$-fatty acid desaturase (fat-1) gene expression on invasion and tumorigenicity in human tongue SCC cells and the molecular mechanism of its action. Docosahexaenoic acid (DHA) treatment inhibited in vitro invasion in a dose-dependent manner. In zymography, matrix metalloproteinase-9 (MMP-9) and Matrix metallopeptidase-2 (MMP-2) activities were reduced, and MMP-9 and MMP-2 promoter activities were inhibited by the DHA treatment. In addition, cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) promoter reporter activities were inhibited in SCC-4 and SCC-9 cells after the DHA treatment. To investigate the effect of a high level of endogenous ${\omega}3$ fatty acids, a stable SCC-9 cell line expressing the ${\omega}3$-desaturase gene (fSCC-9sc) was generated. The growth rate and colony-forming capacity of fSCC-9sc were remarkably decreased as compared with those of fSCC-9cc. Likewise, the tumor size and volume of fSCC-9sc implanted into nude mice were significantly inhibited, with increases in the cell death index. Furthermore, a transwell chamber invasion assay showed a reduction in cell invasion of the fSCC-9sc lines when compared with that of the fSCC-9cc line. These findings suggested that fat-1 gene expression inhibited tumorigenicity, as well as invasion in human tongue SCC cells. Thus, utilization of ${\omega}3$ fatty acids may represent a promising therapeutic approach for chemoprevention and the treatment of human tongue SCCs.

Effect of Hog Millet Supplementation on Hepatic Steatosis and Insulin Resistance in Mice Fed a High-fat Diet (고지방식이로 유도한 지방간 마우스에서 기장 첨가식이가 지방간 및 인슐린 저항성에 미치는 영향)

  • Park, Mi-Young;Jang, Hwan-Hee;Lee, Jin-Young;Lee, Young-Min;Kim, Jae-Hyun;Park, Jae-Hak;Park, Dong-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.501-509
    • /
    • 2012
  • The dietary intake of whole grains is known to reduce the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. In our previous study, hog millet (HM, $Panicum$ $miliaceum$ L.) water extract showed the highest anti-lipogenic activity among nine cereal types in 3T3-L1 cells. In this study, the effect of hog millet water extract on hepatic steatosis and lipid metabolism in mice fed a high fat diet was investigated. Mice were fed a normal-fat diet (ND), high-fat diet (HFD) or HFD containing 1% or 2% (w/w) HM for 7 weeks. Body weight and food intake were monitored during the study period. Insulin resistance by homeostasis model assessment (HOMA-IR), fasting lipid profile, hepatic fatty acid metabolism-related gene expression determined, and intraperitoneal glucose tolerance test (IGTT) were performed at the study's end. The results indicated that 1% and 2% HM diets effectively decreased liver weights, blood TG and T-cholesterol levels (p<0.05), while the HDL-cholesterol level was increased (p<0.05) compared to HFD-induced steatotsis mice. Hepatic lipogenic-related gene ($PPAR{\alpha}$, L-FABP, and SCD1) expressions decreased, whereas lipolysis- related gene (CPT1) expression increased in animals fed the 2% PME diet (p<0.05). In addition, mice fed 1% or 2% HM diet had markedly decreased IGTT and HOMA-IR, compared to the those of the HFD-induced hepatic steatosis control group (p<0.05). These results indicated that HM inhibited hepatic lipid accumulation by regulating fatty acid metabolism, and suggested that HM is useful in the chemoprevention or treatment of high fat-induced hepatic steatosis and hepatic steatosis-related disorders including hyperlipidemia, glucose sensitivity, and insulin resistance.