• Title/Summary/Keyword: cancer cell proliferation

Search Result 1,864, Processing Time 0.026 seconds

Enhanced proliferation of SNU-407 human colon cancer cells by muscarinic acetylcholine receptors

  • Park, Yang-Seo;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.803-807
    • /
    • 2008
  • We investigated the expression of muscarinic acetylcholine receptors (mAChRs) and their possible involvement in the regulation of cell proliferation in four colon cancer cell lines (SNU-61, SNU-81, SNU-407, and SNU-1033) derived from Korean colon carcinoma patients. A ligand binding assay showed that all four cell lines expressed mAChRs. Treatment of the four cell lines with the cholinergic agonist carbachol led to the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In SNU-407 cells, carbachol significantly stimulated cell proliferation, which could be abolished by the muscarinic antagonist atropine and the ERK1/2 kinase inhibitor PD98059. These results indicate that mAChRs specifically mediate the proliferation of SNU-407 colon cancer cells via the ERK1/2 pathway.

Galectin-3-independent Down-regulation of GABABR1 due to Treatment with Korean Herbal Extract HAD-B Reduces Proliferation of Human Colon Cancer Cells

  • Kim, Kyung-Hee;Kwon, Yong-Kyun;Cho, Chong-Kwan;Lee, Yeon-Weol;Lee, So-Hyun;Jang, Sang-Geun;Yoo, Byong-Chul;Yoo, Hwa-Seong
    • Journal of Pharmacopuncture
    • /
    • v.15 no.3
    • /
    • pp.19-30
    • /
    • 2012
  • Objectives: Many efforts have shown multi-oncologic roles of galectin-3 for cell proliferation, angiogenesis, and apoptosis. However, the mechanisms by which galectin-3 is involved in cell proliferation are not yet fully understood, especially in human colon cancer cells. Methods: To cluster genes showing positively or negatively correlated expression with galectin-3, we employed human colon cancer cell lines, SNU-61, SNU-81, SNU-769B, SNU-C4 and SNU-C5 in high-throughput gene expression profiling. Gene and protein expression levels were determined by using real-time quantitative polymerase chain reaction (PCR) and western blot analysis, respectively. The proliferation rate of human colon cancer cells was measured by using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results: Expression of ${\gamma}$-aminobutyric acid B receptor 1 (GABABR1) showed a positive correlation with galectin-3 at both the transcriptional and the translational levels. Down-regulation of galectin-3 decreased not only GABABR1 expression but also the proliferation rate of human colon cancer cells. However, Korean herbal extract, HangAmDan-B (HAD-B), decreased expression of GABABR1 without any expressional change of galectin-3, and offset ${\gamma}$-aminobutyric acid (GABA)-enhanced human colon cancer cell proliferation. Conclusions: Our present study confirmed that GABABR1 expression was regulated by galectin-3. HAD-B induced galectin-3-independent down-regulation of GABABR1, which resulted in a decreased proliferation of human colon cancer cells. The therapeutic effect of HAD-B for the treatment of human colon cancer needs to be further validated.

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

Inhibitory Effect of Beet Extract on Cancer Cell Proliferation (비트 추출물의 암세포 증식 저해 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.257-262
    • /
    • 2022
  • The purpose of this study was to examine the inhibition of human cancer cell proliferation by using various concentrations of Beet Extract containing various bioactive ingredients. The six cancer cell lines used in the experiment were prostate cancer cells DU-145, lung cancer cells A549, breast cancer cells MCF-7, cervical cancer cells HeLa, liver cancer cells SNU-182, and biliary tract cancer cells SNU-1196. Human-derived cancer cell lines were used. The inhibition of cancer cell proliferation at various concentrations of Beet Extract was measured by the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Beet Extract significantly and concentration-dependently inhibited DU145 of prostate cancer cells at all concentrations, and Lung cancer cells A549 and DU-145 of prostate cancer cells at 100ug/mL and 1000ug/mL, cervical cancer cells HeLa, and liver cancer cells SNU- 182, biliary tract cancer cell SNU-1196 showed significant proliferation inhibition at 1000ug/mL. Experiment result, the cancer cell proliferation inhibitory mechanisms of Beet Extract using various human-derived cancer cell lines can be considered to provide cancer prevention effects and the possibility of developing functional foods.

Function of hepatocyte growth factor in gastric cancer proliferation and invasion

  • Koh, Sung Ae;Lee, Kyung Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.

Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines (Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.46 no.6
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Humic Substances Suppresses the Proliferation of TC-1 Cells, the Lung Cancer Cell

  • Eun Ju Yang;Jeong Hyun Chang
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.280-286
    • /
    • 2023
  • In humic substances, fulvic acid (FA) is a subclass of diverse compounds known as humic substances, which are by-products of organic degradation from microorganisms. FA can suppress the proliferation of tumor cells. Despite numerous studies, the exact mechanism for the various effects of FA is not clearly understood. Based on results demonstrating anti-proliferation effects on human cancer, we investigated whether FA has similar effects on lung cancer in this study. Firstly, the anti-cancer effect of FA in pulmonary epithelial tumor cell lines (TC-1 cells) was examined by confirming its inhibitory effect on the cell proliferation of TC-1 cells. TC-1 cell proliferation was reduced by FA on a dose-dependent and time-dependent manner. After 24 hours of FA treatment, cell morphological changes such as cell volume decrease, non-adherence and increased number of apoptotic cells were clearly observed. In addition, FA induced a DNA ladder pattern by increased of DNA fragments in TC-1 cells. In the intracellular regulatory pathway by FA, we confirmed that FA induced the reduction of the anti-apoptotic protein, Bcl-2 protein levels. These results indicate that FA has anticancer effect by inducing intracellular apoptotic pathway. Further research on the mechanism of anticancer effects will be basic data for the development of potential anticancer drugs.

Experimental Effects of Taklihwangki-Tang on the Anti-Cancer And Immuno-Action (托裏黃기湯이 抗癌 및 免疫作用에 미치는 實驗的 效果)

  • Jeong, Dong-Hwan;Choi, Jung-Hwa;Kim, Jong-Han;Jeong, Woo-Hyun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.118-130
    • /
    • 2002
  • Taklihwangki-Tang was a drug that treated carbuncle and cellulitis. So, the purpose of this Study was to investigate effect of Taklihwangki-Tang on the anti-cancer and proliferation of immunocytes, nitric oxide(NO) production of peritoneal macrophages. We used Taklihwangki-Tang extract(THT) with freeze-dried, 8wks-old male mice and cancer cell lines(L1210, S-180) for this Study. The proliferation of cells was tested using a colorimetric tetrazoliun assay(MTT assay). The results of this Study were obtained as follow ; THT was showed cytotoxicity on the L1210 and S-180 cell lines, increased proliferation of thymocytes. And the combined effects of THT and vincristine were became cytotoxicity of cancer cell lines and increased significantly proliferation of thymocytes. THT accelerated proliferation of thymocytes in normal mice, and decreased significantly proliferation of L1210 cells and accelerated significantly NO production of peritoneal macrophages in L1210 cells transplanted mice. This results suggest that THT inhibit proliferation of cancer cells by becoming immunocytes activity(NO production, proliferation of T-cell).

  • PDF

Down-regulation of FRα Inhibits Proliferation and Promotes Apoptosis of Cervical Cancer Cells in Vitro

  • Bai, Li-Xia;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Chen;Zhou, Qin;Wang, Jin-Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5667-5672
    • /
    • 2014
  • Folate receptor alpha ($FR{\alpha}$) mediates folate uptake by endocytosis, and while folate is essential to DNA methylation and synthesis and may have an important role in proliferating cells. $FR{\alpha}$ is known to be expressed in rapidly proliferating cells, including many cancer cell lines, but there has been no systematic assessment of expression in cervical cancer cell lines. The aim of the present study was to evaluate the effects of $FR{\alpha}$ on proliferation and apoptosis of cervical cells and correlation mechanism. In this study, we investigated the biological function of $FR{\alpha}$ in Hela cells using RNA interference. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK8) assay, while cell cycling and apoptosis were assessed by flow cytometry, mRNA levels by real time-PCR and protein levels of $FR{\alpha}$, c-Fos and c-Jun by Western blotting. The results revealed that $FR{\alpha}$ was highly expressed in Hela cells and its silencing with a small interfering RNA (siRNA) inhibited cell proliferation and induced cell apoptosis, arresting the cell cycle in G0/G1 stages while decreasing the proportion in S and G2/M stages, and suppressed the expression levels of c-Fos and c-Jun. In conclusion, the results of this study indicated that $FR{\alpha}$ down-regulation might be capable of suppressing cervical cancer cell proliferation and promoting apoptosis. It suggested that $FR{\alpha}$ might be a novel therapeutic target for cervical cancer.

Effects of Ginsenosides $Rg_3$ and $Rh_2$ OH the Proliferation of Prostate Cancer Cells

  • Kim Hyun-Sook;Lee Eun-Hee;Ko Sung-Ryong;Choi Kang-Ju;Park Jong-Hee;Im Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2004
  • Ginseng has an anti-cancer effect in several cancer models. This study was to characterize active constituents of ginseng and their effects on proliferation of prostate cancer cell lines, LNCaP and PC3. Cell proliferation was measured by $[^3H]$thymidine incorporation, the intracellular calcium concentration by a dual-wavelength spectrophotometer system, effects on mite-gen-activated protein (MAP) kinases by Western blotting, and cell attachment and morphologic changes were observed under a microscope. Among 11 ginsenosides tested, ginsenosides $Rg_3\;and\;Rh_2$ inhibited the proliferation of prostate cancer cells. $EC_{50}s\;of\;Rg_3\;and\;Rh_2$ on PC3 cells were $8.4{\mu}M\;and\;5.5{\mu}M$, respectively, and $14.1{\mu}M\;and\;4.4{\mu}M$ on LNCaP cells, respectively. Both ginsenosides induced cell detachment and modulated three modules of MAP kinases activities differently in LNCaP and PC3 cells. These results suggest that ginsenosides $Rg_3\;and\;Rh_2$-induced cell detachment and inhibition of the proliferation of prostate cancer cells may be associated with modulation of three modules of MAP kinases.