• Title/Summary/Keyword: cancer cell growth inhibition activity

Search Result 427, Processing Time 0.042 seconds

Inhibitory Effect of Scutellaria barbata Don Water-extracts on Growth and DNA Incorporation of Human Cancer Cells

  • Kim, Dong-Il
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.162-173
    • /
    • 2006
  • The water-extracts of Scutellaria barbata Don (SBDE) were isolated from Chinese medicinal plant sources. The extracts showed strong growth-inhibitory activity and cancer chemopreventive activity on the growth and DNA incorporation of MG63 human osteosarcoma and K562 human leukemia cell lines. The growth of human cancer cells was inhibited in the presence of the extracts (20, 50 and 100 ${\mu}$g/ml), and the effects were concentration-dependent and incubation time-dependent up to 8 days. When 50 ${\mu}$g/ml of the extracts was added to the media of MG63 and K562, cell growth after 8 days or 6 days of incubation was retarded by 93.2 to 97.3% of the control group. Morphological changes of MG63 and K562 cell lines were observed. As the concentration of the extracts increased up to 50 ${\mu}$g/ml, degree of cell aggregation decreased. Moreover, the DNA incorporation of the cells which were labeled with [3H] thymidine was significantly reduced after 3 days of incubation at $37^{\circ}C$ with the extract. Therefore, it is suggested that the extract is highly effective on inhibition of cancer cell growth. The extract also inhibited gene expression of IGF-II in transcriptional level. Since IGF-II works as a mitogenic effector on MG63 and K562 cell lines, these results suggest that the growth inhibition is in part mediated through the inhibition of IGF-II gene expression.

  • PDF

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

The Growth Inhibition Effect of L-1210 and S-180 Cancer Cell Lines by the Extract from Anemarrhena Asphodeloides (지모(知母) 추출물이 L-1210 및 S-180 암세포주 성장 억제에 미치는 영향)

  • Yim, Chi-Hye;Cho, Jae-Seung;Kim, Hyo-Soo;Kwon, Seung-Man;Kim, Shin;Kim, Il-Hwan;Park, Hye-Sun
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2007
  • 1. Objective This study was aimed to screen the potential antitumor activity of one kinds of Korean medicinal herb extracts against cancer cell lines and to evaluate the growth inhibition effect of L-1210 and S-180 cancer cell lines. 2. Methods It confirmed Anemarrhena asphodeloides extracts to screen the potential antitumor activity. Then, it was extracted with 4 kinds of solvents ; hexane, ethyl acetate, butanol and $H_2O$, and the Growth inhibition effect of these extracts were determined against cancer cell and normal cell. The results were as follows : The IC50(50% inhibitory concentration) values of Anemarrhena asphodeloides extracts were shown to be $253{\mu}g/ml$ against L-1210 cell lines. The IC50 values of ethyl acetate extracts were shown to be $915{\mu}g/ml$ against L-1210 cell lines. The IC50 values of butanol extracts were shown to be $52.3{\mu}g/ml$, $485{\mu}g/ml$ against L-1210, S-180 cell lines, respectively. The butanol extracts were more selectively effective than other extracts to cancer cell lines. 3. Conclusion From these data, it could be concluded that the Anemarrhena asphodeloides extracts to the Growth inhibition effect of L-1210 and S-180 cancer cell lines.

  • PDF

Antioxidant and Cancer Cell Growth Inhibition Activity of Five Different Varieties of Artemisia Cultivars in Korea (국내산 품종별 쑥의 항산화 및 암세포성장 억제활성)

  • Kim, Ra-Jeong;Kang, Min-Jung;Hwang, Cho-Rong;Jung, Woo-Jae;Shin, Jung-Hye
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.844-851
    • /
    • 2012
  • Antioxidant and cancer cell growth inhibition activity of hot water extract from five different varieties of Artemisia (A. Argyi H., A. iwayomogi Kitamura, A. Princeps Var Orien talis HARA, A. princeps Pampanini and A. annua L.) in Korea was studied. We determined the phenol and flavonoid contents and examined antioxidant assay, such as DPPH, NO radical scavenging, activity ferric-reducing antioxidant power (FRAP), and bleaching inhibition activity in the ${\beta}$-carotene linolic acid system. Also, we performed HeLa and MCF-7 cancer cell growth inhibition assay of Artemisia extracts. Total phenol and flavonoid contents were the highest in A. iwayomogi Kitamura followed by A. Argyi H. DPPH radical scavenging activity was the highest in A. Argyi H. at 50 ${\mu}g/ml$ concentration, NO radical scavenging activity was more than 50% in A. Princeps Var Orien talis HARA, A. princeps Pampanini, and A. annua L. at 200 ${\mu}g/ml$ concentration. FRAP was higher in A. Argyi H. and A. iwayomogi Kitamura. Antioxidant activity in the ${\beta}$-carotene linolinolic system was also higher in A. Argyi H. and A. iwayomogi Kitamura by 60.50% and 56.90% at 100 ${\mu}g/ml$ concentration, respectively. In cancer cell growth inhibition activities at 400 ${\mu}g/ml$ concentration, A. iwayomogi Kitamura showed greater than 80% on HeLa cell. A. princeps Pampanini and A. Argyi H. extract had growth inhibition activities greater than 80% on MCF cell. The results of this study suggest that the antioxidant and anticancer activities in various Artemisia are a promising source of functional food ingredients.

Antioxidant, Antimicrobial, and Cancer Cell Proliferative Inhibition Activities of Propolis

  • Kang, Ho-Jin;Ko, Ki-Wan;Lee, Ok-Hwan;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1042-1045
    • /
    • 2009
  • A commercial propolis was investigated in terms of its antioxidant, antimicrobial, and antiproliferative activities. The contents of total phenol and flavonoid of propolis were 8.3 and 6.6 mg, respectively. The reducing power of the propolis increased with concentration increasing. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was shown at 82.70% in 1,000 ${\mu}g/mL$ of the propolis. 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging effect of antioxidant activity on the propolis was 35.64 g/sample. The propolis showed high antimicrobial activity against Bacillus cereus at all concentration of propolis. All of the cancer cell lines have 53-73% as effective growth inhibition. These results showed that the commercial propolis has potential antioxidant, antimicrobial, and cancer cell proliferative inhibition activities thus, propolis can be applied to the functional food, pharmaceutical, and cosmetic industry.

Isolation of the Constituents with Cancer Cell Growth Inhibition and Anti-inflammatory Activity from Persicaria nepalensis (암세포 성장 저해 및 항염증 효능을 나타내는 산여뀌 성분의 분리)

  • Kim, Donghwa;Lee, Sang Kook;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.245-252
    • /
    • 2019
  • This study was initially explored to procure biomaterials capable of inhibiting cancer cell growth from nine Persicaria species (Polygonaceae). The extract of P. nepalensis that was selected from the initial screenings was further fractionated to identify bioactive compounds. The ethyl acetate (EtOAc) fraction was shown to be the most active in the inhibition of cell growth against six cancer cell lines (IC50 value of 3.77-12.87 ㎍/ml). Phytochemical study led to the isolation of two galactolipids of 1,2-di-O-linolenoyl-3-O-β-D-galactospyranosyl-sn-glycerol (1) and 1-O-linolenoyl-3-O-β-D-galactospyranosyl-sn-glycerol (2) from the hexane fraction and three phenylpropanoyl sucroses of lapathoside A (3), vanicoside B (4) and lapathoside C (5) from the EtOAc fraction. These isolated compounds have not been reported from this plant. Compounds 3 and 4 exhibited the effective growth inhibition against a panel of cancer cell lines (IC50 value of 6.90-18.09 μM). In addition, the anti-inflammatory activity was evaluated to determine lipopolysaccharide (LPS)-induced nitric oxide (NO) formation in RAW264.7 mouse macrophage cells. The EtOAc fraction (IC50; 34.14 ㎍/ml) and its constituents, 3 (8.55 μM) and 4 (7.83 μM) were shown to be effective in the inhibition of LPS-induced NO production. Therefore, compounds 3 and 4 were considered to be active constituents for anti-inflammatory and antitumor activity from P. nepalensis.

Influence of Tyrosol on Cell Growth Inhibition of KB Human Oral Cancer Cells

  • Lee, Ue-Kyung;Kim, Su-Gwan;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Kim, Jeongsun;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.175-181
    • /
    • 2016
  • Tyrosol, a phenylethanoid and a derivative of phenethyl alcohol, possesses various biological properties, such as anti-oxidative and cardioprotective activity. Olive oil is the principal source of tyrosol in the human diet. However, so far the anti-cancer activity of tyrosol has not yet been well defined. This study therefore undertakes to examine the cytotoxic activity and the mechanism of cell death exhibited by tyrosol in KB human oral cancer cells. Treatment of KB cells with tyrosol induced the cell growth inhibition in a concentration- and a time-dependent manner. Furthermore, the treatment of tyrosol induced nuclear condensation and fragmentation of KB cells. Tyrosol also promoted proteolytic cleavage of procaspase-3, -7, -8 and -9, increasing the amounts of cleaved caspase-3, -7, -8 and -9. In addition, tyrosol increased the levels of cleaved PARP in KB cells. These results suggest that tyrosol induces the suppression of cell growth and cell apoptosis in KB human oral cancer cells, and is therefore a potential candidate for anti-cancer drug discovery.

Growth Inhibition and G2/M Phase Cell Cycle Arrest by 3,4,5-Trimethoxy-4'-bromo-cis-stilbene in Human Colon Cancer Cells

  • Heo, Yeon-Hoi;Min, Hye-Young;Kim, Sang-Hee;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • Resveratrol (3,5,4’-trihydroxy-trans-stilbene), a naturally occurring phytoallexin abundant in grapes and several plants, has been shown to be active in inhibiting proliferation and inducing apoptosis in several human cancer cell lines. On the line of the biological activity of resveratrol, a variety of resveratrol analogs were synthesized and evaluated for their growth inhibitory effects against several human cancer cell lines. In the present study, we found that one of the resveratrol analogs, 3,4,5-trimethoxy-4’-bromo-cis-stilbene, markedly suppressed human colon cancer cell proliferation (EC$_{50}$ = 0.01 ${\mu}$g/ml), and the inhibitory activity was superior to its corresponding trans-isomer (EC$_{50}$ = 1.6 ${\mu}$g/ml) and resveratrol (EC$_{50}$ = 18.7 ${\mu}$g/ml). Prompted by the strong growth inhibitory activity in cultured human colon cancer cells (Col2), we investigated its mechanism of action. 3,4,5-Trimethoxy-4’-bromo-cis-stilbene induced arrest of cell cycle progression at G2/M phase and increased at sub-G1 phase DNA contents of the cell cycle in a time- and dose-dependent manner. Colony formation was also inhibited in a dose-dependent manner, indicating the inhibitory activity of the compound on cell proliferation. Moreover, the morphological changes and condensation of the cellular DNA by the treatment of the compound were well correlated with the induction of apoptosis. These data suggest the potential of 3,4,5-trimethoxy-4’-bromo-cis-stilbene might serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and inducing apoptosis for the human colon cancer cells.

Antiestrogen, Trans-Tamoxifen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.572-578
    • /
    • 1997
  • To gain further insight into how antiestrogens modulate cell function, the effects of antiestrogen on cell proliferation were studied in human breast cancer cells. We examined the effects of trans-tamoxifen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Trans-tamoxifen $(1{\mu}M)$ markedly inhibited the estrogen stimulated proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $(1.15{\pm}0.03 pmole/mg protein)$ over that of control. In T47D cells that contained low levels of estrogen receptor $(0.23{\pm}0.05 pmole/mg protein)$, trans-tamoxifen $(1{\mu}M)$ showed minimal inhibition of estrogen stimulated cell proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by trans-tamoxifen treatment. These results showed their sensitivity to growth inhibition by antiestrogen conrrelated well with their estrogen receptor content. Also we examined the effect of antiestrogen on cellular progestrone receptor level as well as plasminogen activator activity in MCF-7 cells. Trans-tamoxifen $(1{\mu}M)$ showed maximal inhibition of estrogen stimulated progestrone receptor level as well as plasminogen activator activity in MCF-7 cells that were stimulated by estrogen. It is not clear whether these inhibitions of progestrone receptor and plasminogen activator activity by estrogen are related to the antiestrogen inhibition of cell proliferation of MCF-7 cells. From the results of this study, it is clearly demonstrated that trans-tamoxifen is an antiestrogen in MCF-7 human breast cancer cells. Our data suggest that the biological effectiveness of trans-tamoxifen appear to result from its affinity of interaction with the estrogen receptor.

  • PDF

Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells

  • Putri, Herwandhani;Jenie, Riris Istighfari;Handayani, Sri;Kastian, Ria Fajarwati;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2683-2688
    • /
    • 2016
  • A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV-0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with $IC_{50}$ values of $94.9{\mu}M$ and $49.0{\pm}0.2{\mu}M$, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent.