• 제목/요약/키워드: cancer cell growth inhibition

검색결과 820건 처리시간 0.028초

재배 복령(Poria cocos Wolf)의 Triterpenoids 분획의 항균 활성 및 항암 활성 (Antimicrobial and Antitumor Activity of Triterpenoids Fraction from Poria cocos Wolf)

  • 정신교;권미선;최종옥;송경식;이인선
    • 한국식품영양과학회지
    • /
    • 제28권5호
    • /
    • pp.1029-1033
    • /
    • 1999
  • Seven fractions were separated by silica gel chromatography from the diethyl ether souble portion of the methanolic extract of the cultured hoelen(Poria cocos Wolf). Three fractions were separated from the Fr.II and Fr.IV by rechromatography, respectively. The most active fraction, Fr.II 3 and Fr.IV 3, were separated to 2 and 4 fractions by preparative HPLC. On the result of antimicrobial test, triterpenoids fractions showed weaker effect than benzoic acid but Fr.II 3 1, Fr.II 3 2 had an excellent antimi crobial activity. Triterpenoids fraction of hoelen(Poria cocos Wolf) showed a high inhibition activity on the growth of lung cancer, ovary cancer, skin cancer, central nerve cancer and rectum cancer cell, especially the activity of Fr.II 3 1 and Fr.II 3 2 was the highest.

  • PDF

Exogenous p53 Upregulated Modulator of Apoptosis (PUMA) Decreases Growth of Lung Cancer A549 Cells

  • Liu, Chun-Ju;Zhang, Xia-Li;Luo, Da-Ya;Zhu, Wei-Feng;Wan, Hui-Fang;Yang, Jun-Ping;Yang, Xiao-Jun;Wan, Fu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.741-746
    • /
    • 2015
  • Purpose: To investigate the influence of exogenous p53 upregulated modulator of apoptosis (PUMA) expression on cell proliferation and apoptosis in human non-small cell lung cancer A549 cells and transplanted tumor cell growth in nude mice. Materials and Methods: A549 cells were divided into the following groups: control, non-carrier (NC), PUMA (transfected with pCEP4-(HA) 2-PUMA plasmid), DDP ($10{\mu}g/mL$ cisplatin treatment) and PUMA+DDP (transfected with pCEP4-(HA)2-PUMA plasmid and $10{\mu}g/mL$ cisplatin treatment). The MTT method was used to detect the cell survival rate. Cell apoptosis rates were measured by flow cytometry, and PUMA, Bax and Bcl-2 protein expression levels were measured by Western blotting. Results: Compared to the control group, the PUMA, DDP and PUMA+DDP groups all had significantly decreased A549 cell proliferation (p<0.01), with the largest reduction in the PUMA+DDP group. Conversely, the apoptosis rates of the three groups were significantly increased (P<0.01), and the PUMA and DDP treatments were synergistic. Moreover, Bax protein levels significantly increased (p<0.01), while Bcl-2 protein levels significantly decreased (p<0.01). Finally, both the volume and the weights of transplanted tumors were significantly reduced (p<0.01), and the inhibition ratio of the PUMA+DDP group was significantly higher than in the single DDP or PUMA groups. Conclusions: Exogenous PUMA effectively inhibited lung cancer A549 cell proliferation and transplanted tumor growth by increasing Bax protein levels and reducing Bcl-2 protein levels.

생더덕과 발효더덕의 유용생리활성 비교 (Comparison of Biological Activities of Fermented Codonopsis lanceolata and Fresh Codonopsis lanceolata)

  • 김승섭;하지혜;정명훈;안주희;윤원병;박성진;성동호;이현용
    • 한국약용작물학회지
    • /
    • 제17권4호
    • /
    • pp.280-285
    • /
    • 2009
  • Both fresh Codonopsis lanceolata and lactic acid bacteria fermented Codonopsis lanceolata were extracted with water at $100^{\circ}C$, and tested for anticancer activity using several human cancer cell lines. The fermented extracts inhibited the growth of hepatocellular carcinoma cells up to 90%, compared to 75% for fresh Codonopsis lanceolata. The extracts of cytotoxicity on human normal lung cells (HEK293) were as low as 15%. Especially, human hepatocellular carcinoma cell were more efficiently inhibited than other cells. This extract also inhibited $\alpha$-glucosidase activity up to 60% at 1.0mg/$m{\ell}$. This fermented extracts showed the inhibition potency on tyrosinase by 25% at 1.0mg/$m{\ell}$. From the results, the fermented Codonopsis lanceolata enhanced several biological activities up to $20{\sim}30%$, compared to those from fresh Codonopsis lanceolata. It implies that fermentation process could be one of useful methods of utilizing low quality Codonopsis lanceolata. Because this process could yield high amounts of biologically active compounds by the help of microbial growth.

Cytotoxicity of Cytosine Deaminase (CD) Adenoviral Vectors(AV) with a Promoter (L-plastin) for Epithelial Cancer Cells.

  • Chung, Injae;Jung, Kihwa;Deisseroth, Albert B.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.80-80
    • /
    • 1997
  • The object of this study was to develop a gene therapy strategy for ovarian cancer. We have previously shown that AV with a L-plastin (LP) promoter infects breast and ovarian cancer cells and expressed ${\beta}$-galactosidase cDNA in preference to normal fibroblast cells and hematopoietic cells. We now report on the cytotoxicity of Ad.LP.CD, an AV carrying a CD cDNA which converts the pro-drug, 5-Fluorocytosine (5-FC) into the toxic drug 5-Fluorouracil (5-FU). Infection of Ad.LP.CD into either 293 cells or ovarian cancer cells generated the functional CD as measured by HPLC analysis. Using a ratio of AV to OVCAR3 cell of 100 and a 5-FC concentration of 100 ${\mu}$M, we achieve an over 95 % of cell growth inhibition. We are using flow cytometry analysis for ${\beta}$ -galactosidase and ovarian cancer associated folate receptor to screen primary ascites samples for infectivity after infection with an adenoviral vector, i.e., Ad.LP.LacZ. This vector system may be of value in the treatment of microscopic disease of ovarian cancer in the peritoneal cavity.

  • PDF

BmKn-2 Scorpion Venom Peptide for Killing Oral Cancer Cells by Apoptosis

  • Tong-ngam, Pirut;Roytrakul, Sittiruk;Sritanaudomchai, Hathaitip
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2807-2811
    • /
    • 2015
  • Scorpion venom peptides recently have attracted attention as alternative chemotherapeutic agents that may overcome the limitations of current drugs, providing specific cytotoxicity for cancer cells with an ability to bypass multidrug-resistance mechanisms, additive effects in combination therapy and safety. In the present study, BmKn-2 scorpion venom peptide and its derivatives were chosen for assessment of anticancer activities. BmKn-2 was identified as the most effective against human oral squamous cells carcinoma cell line (HSC-4) by screening assays with an $IC_{50}$ value of $29{\mu}g/ml$. The BmKn-2 peptide killed HSC-4 cells through induction of apoptosis, as confirmed by phase contrast microscopy and RT-PCR techniques. Typical morphological features of apoptosis including cell shrinkage and rounding characteristics were observed in treated HSC-4 cells. The results were further confirmed by increased expression of pro-apoptotic genes such as caspase-3, -7, and -9 but decrease mRNA level of anti-apoptotic BCL-2 in BmKn-2 treated cells, as determined by RT-PCR assay. In summary, the BmKn-2 scorpion venom peptide demonstrates specific membrane binding, growth inhibition and apoptogenic activity against human oral cancer cells.

Anti-cancer Activities of Ginseng Extract Fermented with Phellinus linteus

  • Lee, Jong-Jin;Kwon, Ho-Kyun;Jung, In-Ho;Cho, Yong-Baik;Kim, Kyu-Joong;Kim, Jong-Lae
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.21-27
    • /
    • 2009
  • In the present study, the anti-cancer effects of ginseng fermented with Phellinus linteus (GFPL) extract were examined through in vitro and in vivo assays. GFPL was produced by co-cultivating ginseng and Phellinus linteus together. Ginsenoside Rg3, Rh1 and Rh2 are important mediators of anti-angiogenesis and their levels in GFPL were enriched 24, 19 and 16 times, respectively, more than that of ginseng itself through the fermentation. GFPL exhibited distinct anti-cancer effects, including growth inhibition of the human lung carcinoma cell line A549, and promotion of immune activation by stimulating nitric oxide (NO) production in Raw 264.7 cells. Further evidence supporting anti-cancer effects of GFPL was its significant prolongment of the survival of B16F10 cancer cell-implanted mice. These results suggest that the GFPL may be a candidate for cancer prevention and treatment through immune activation and anti-angiogenic effects by enriching Rg3, Rh1 and Rh2.

Curcumin-Induced Apoptosis of A-431 Cells Involves Caspase-3 Activation

  • Shim, Joong-Sup;Lee, Hyung-Joo;Park, Sang-shin;Cha, Bong-Gee;Chang, Hae-Ryong
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.189-193
    • /
    • 2001
  • Curcumin a yellow pigment from Curcuma Tonga, has been known to possess antioxidative and anticarcinogenic properties, as well as to induce apoptosis in some cancer cells. There have been, however, several contradictory reports that hypothesized curcumin (a hydrophobic molecule) can bind a membrane Gpid bilayer and induce nonspecific cytotoxicity in some cell lines. Why curcumin shows these contradictory effects is unknown. In A-431 cells, growth inhibition by curcumin is due mostly to the specific inhibition of the intrinsic tyrosine kinase activity of the epidermal growth factor receptor, as reported earlier by Korutla et al. Thus, we assumed that the cell death of A-431 by curcumin might be due to the specific induction of apoptosis. In this paper we clearly show that curcumin induces apoptosis in A-431 cells. The cureumin-induced cell death of A-431 exhibited various apoptotic features, including DNA fragmentation and nuclear condensation. Furthermore, the curcumin-induced apoptosis of A-431 cells involved activation of caspase-3-like cysteine protease. Involvement of caspase-3 was further confirmed by using a caspase-3 specific inhibitor, DEVD-CHO. In another study, decreased nitric oxide (NO) production was also shown in A-431 cells treated with curcumin, which seems to be the result of the inhibition of the iNOS expression by curcumin, as in other cell lines. However, 24 h after treatment of curcumin there was increased NO production in A-431 cells. This observation has not yet been clearly explained. We assumed that the increased NO production may be related to denitrosylation of the enzyme catalytic site in caspase-3 when activated. Taken together, this study shows that the cell death of A-431 by curcumin is due to the induction of apoptosis, which involves caspase-3 activation.

  • PDF

토복령 추출물이 처리된 여러 종류의 사람 암세포주에서 아노이키스 세포 사멸에 의한 세포 성장의 억제 (Inhibition of Cell Growth by Anoikis in Various Human Cancer Cell Lines Treated with an Extract of Smilax china L.)

  • 김민재;김현지;김무경;이성호;전병균
    • 생명과학회지
    • /
    • 제31권3호
    • /
    • pp.266-279
    • /
    • 2021
  • 본 연구에서는 다양한 사람의 암세포주(A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74 및 SNU-601 세포)와 정상세포주(MRC-5 섬유아세포 및 사랑니 유래 중간엽성 줄기세포에 토복령 추출물(Smilax china L. extract, SCLE)을 처리하여 세포 사멸 효과를 조사하였다. SCLE 처리 후, MTT 분석에서 여러 암세포주는 정상세포주보다 유의적으로 휠씬 낮은 반억제농도값을 나타내었고, 세포는 세포부착력의 소실로 인한 세포사멸(anoikis)이 관찰되었다. 또한, SCLE를 처리한 A-549, AGS 및 MCF-7 암세포주에서 세포의 생존성과 말단소립 복원효소의 활성도를 조사하였을 때, SCLE 처리 후 4일째에 세포의 생존성과 말단소립 복원효소의 활성도가 현저히 줄어드는 것을 관찰하였다. 또한, SCLE를 처리한 A-549, AGS 및 MCF-7 암세포주에서 세포 주기의 G1기에서 세포 성장이 정지되었고,세포 사멸이 유의적으로 증가하는 것을 알 수 있었다. 그러나, SCLE 처리는 rho 단백질의 활성과 관련 없는 세포부착력의 소실과 세포 사멸이 유도되는 것을 관찰하였다. 이 연구의 결과를 바탕으로 토복령 추출물은 정상 세포보다는 암세포에 특이적으로 세포부착력의 소실과 세포 사멸을 유도하여, 이 추출물에 포함된 물질을 이용한 항암 연구에 응용될 수 있을 것으로 판단된다.

Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells

  • Fan, Yu-Ling;Fan, Bing-Yu;Li, Qiang;Di, Hai-Xiao;Meng, Xiang-Yu;Ling, Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7611-7615
    • /
    • 2014
  • Aims: To prepare 5-fluorouracil (5-Fu) nanoparticles with higher encapsulation efficiency and drug loading, and then investigate interaction with the SGC-7901 gastric cancer cell line. Materials and Methods: Prescription was optimized by orthogonal experiments, the encapsulation efficiency and loading capacity were tested by high-performance liquid chromatography, and inhibition of proliferation by 5-Fu nanoparticles and 5-Fu given to cells for 24, 48 and 72 hours was investigated by methyl thiazolyl tetrazolium assay (MTT). In addition, 5-Fu nanoparticles were labeled by fluorescein isothiocyanate (FITC), and absorption into cells was tested by flow cytometry. Results: The optimal conditions for preparation were concentrations of 5-Fu of 5mg/ml, of $CaCl_2$ of 60 mg/ml and of chitosan of 2 mg/ml. With a stirring speed of 1200rpm, encapsulation efficiency of 5-Fu nanoparticles was $55.4{\pm}1.10%$ and loading capacity was $4.22{\pm}0.14%$; gastric cancer cells were significantly inhibited by 5-Fu nanoparticles in a time and concentration dependent manner, and compared to 5-Fu with slower drug release, in a certain concentration range, inhibition with 5-Fu nanoparticles was stronger. 5-Fu nanoparticles were absorbed by the cells in line with the concentration. Conclusions: 5-Fu nanoparticles can inhibit growth of gastric cancer cells in vitro to a greater extent than with 5-Fu with good adsorption characteristics, supporting feasibility as a carrier.

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.