• 제목/요약/키워드: camera motion tracking

검색결과 223건 처리시간 0.026초

Stabilization of Target Tracking with 3-axis Motion Compensation for Camera System on Flying Vehicle

  • Sun, Yanjie;Jeon, Dongwoon;Kim, Doo-Hyun
    • 대한임베디드공학회논문지
    • /
    • 제9권1호
    • /
    • pp.43-52
    • /
    • 2014
  • This paper presents a tracking system using images captured from a camera on a moving platform. A camera on an unmanned flying vehicle generally moves and shakes due to external factors such as wind and the ego-motion of the machine itself. This makes it difficult to track a target properly, and sometimes the target cannot be kept in view of the camera. To deal with this problem, we propose a new system for stable tracking of a target under such conditions. The tracking system includes target tracking and 3-axis camera motion compensation. At the same time, we consider the simulation of the motion of flying vehicles for efficient and safe testing. With 3-axis motion compensation, our experimental results show that robustness and stability are improved.

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF

Active Object Tracking using Image Mosaic Background

  • Jung, Young-Kee;Woo, Dong-Min
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.52-57
    • /
    • 2004
  • In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.

능동카메라를 이용한 특징기반의 물체추적 (Feature-based Object Tracking using an Active Camera)

  • 정영기;호요성
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.694-701
    • /
    • 2004
  • 본 논문에서는 능동카메라 환경에서 카메라의 움직임에 의해 유발되는 광역움직임(global motion)과 이동물체에 의해 발생하는 지역움직임(local motion)을 분리한 후, 카메라 팬틸트를 제어하여 물체를 추적하는 특징기반의 추적 시스템을 제안했다. 제안한 시스템은 블록기반 움직임 계측을 통해 연속한 2 프레임 사이의 이동 움직임을 찾고, 이 움직임에서 카메라의 움직임으로 인한 광역 움직임을 제거함으로써 전경물체의 지역 움직임만을 추적한다. 이때, 배경만의 움직임만으로 카메라 움직임을 강건하게 계측하기 위하여, 블록기반 움직임에서 배경움직임을 분류하기 위한 지배적인 움직임 추출방법을 제시한다. 또한 분리된 지역움직임으로부터 잡음물체의 움직임을 제거하기 위하여 꼭지점 특징의 추적궤적 속성에 따른 군집화 알고리즘을 제안한다. 제안한 추적시스템은 여러가지 실험에서 좋은 결과를 보였다.

Pan/Tilt 카메라를 이용한 목표물 자동추적장치의 구현 (Intelligent Remote Surveillance System Using Pan/Tilt Camera)

  • 이의배;성기범;고광철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3031-3033
    • /
    • 2000
  • Surveillance system on the internet has attained lots of interests recently. Computer gives surveillance system various functions like remote control and motion detecting. In this paper. auto target tracking system using Pan/Tilt camera is suggested. It consists of UNIX server and Pan/Tilt camera. When UNIX server detect motions from images it sends Pan/Tilt command to camera and camera moves by command. After finishing movement camera replies to server and server starts detecting motion again. To improve performance of motion detecting and tracking images are divided into 9 sub-regions and camera behaves differently. It is certain that robust tracking is achieved when sub-region is applied.

  • PDF

단일 카메라와 Tracking 기법을 이용한 이동 물체의 모션 분석 (Motion Analysis of a Moving Object using one Camera and Tracking Method)

  • 신명준;손영익;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2821-2823
    • /
    • 2005
  • When we deal with the image data through camera lens, much works are necessary for removing image distortions and obtaining accurate informations from the raw data. However, the calibration process is very complicated and requires many trials and errors. In this paper, 3 new approach to image processing is presented by developing a H/W vision system with a tracking camera. Using motor control with encoders the proposed tracking method tells us exact displacements of a moving object. Therefore this method does not require any calibration process for pin cusion. Owing to the mobility one camera covers wide ranges and, by lowering its height, the camera also obtains high resolution of the image. We first introduce the structure of the motion analysis system. Then the construced vision system is investigated by some experiments.

  • PDF

능동카메라 환경에서의 특징기반의 이동물체 추적 (Feature based Object Tracking from an Active Camera)

  • 오종안;정영기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.141-144
    • /
    • 2002
  • This paper describes a new feature based tracking system that can track moving objects with a pan-tilt camera. We extract corner features of the scene and tracks the features using filtering, The global motion energy caused by camera movement is eliminated by finding the maximal matching position between consecutive frames using Pyramidal template matching. The region of moving object is segmented by clustering the motion trajectories and command the pan-tilt controller to follow the object such that the object will always lie at the center of the camera. The proposed system has demonstrated good performance for several video sequences.

  • PDF

A Study on Implementation of Motion Graphics Virtual Camera with AR Core

  • Jung, Jin-Bum;Lee, Jae-Soo;Lee, Seung-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.85-90
    • /
    • 2022
  • 본 연구는 실제 카메라의 움직임과 동일한 가상 카메라의 움직임을 구현하기 위해 전통적인 모션그래픽 제작 방법이 가지고 있는 소요시간과 비용에 대한 단점을 줄이기 위해 AR Core 기반의 모바일 디바이스 실시간 트래킹 데이터를 이용하여 모션그래픽 가상카메라를 생성하는 방법을 제안했다. 제안하는 방법은 촬영 이후 저장된 비디오 파일에서의 트래킹 작업을 간소화하고, 촬영 단계에서 트래킹 성공 유무를 판단하기 위해 AR Core 기반 모바일 디바이스에서 촬영과 동시에 진행하는 방법이다. 실험결과 전통적인 방법과 비교하였을 때 모션그래픽 결과 이미지의 차이는 없었으나 300프레임(frame) 영상 기준 6분 10초의 시간이 소모된 반면에 제안한 방법은 이 단계를 생략할 수 있어 매우 높은 시간적 효율성을 갖는다. 현재 가상 증강 현실을 이용한 영상제작에 대한 관심과 다양한 연구가 진행되고 있는 시점에서 본 연구는 가상 카메라 생성과 매치 무빙 등에서 활용될 있을 것이다.

하나의 카메라를 이용한 이동로봇의 이동물체 추적기법 (Visual Tracking of Moving Target Using Mobile Robot with One Camera)

  • 한영준;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • 한국멀티미디어학회논문지
    • /
    • 제10권6호
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF