본 논문은 주행중 차량에 장착된 카메라의 자세 변화를 카메라 외부 파라미터의 변화로 간주하고, 이의 추정을 통하여 도로의 요철과 전방 도로의 기울기 변화 등에 강건한 차선 검출 알고리즘을 제안한다. 제안하는 알고리즘에서 차선은 실세계 좌표에서 좌우가 평행하고 고정된 폭을 가진다 가정하며, 카메라 움직임을 고려한 연속된 영상들의 병합된 특징맵에서 B-snake를 이용하여 차선 검출과 카메라 외부 파라미터 추정이 동시에 수행된다. 실험을 통하여 카메라 외부 파라미터에 영향을 주는 주행 도로 환경의 변화에 강건한 차선 검출 결과를 확인하였으며, 추정된 카메라 외부 파라미터의 정확성은 전방 차량에 대한 레이더 실측 거리와의 비교를 통해 확인했다.
본 논문에서는 사영과 치환불변 점 특징을 기반으로 카메라의 외부인수를 산출하는 방법을 제안한다. 기존 연구에서의 특징 정보들은 카메라의 뷰 포인트에 따라 변화하기 때문에 대응점 산출이 어렵다. 따라서 본 논문에서는 카메라 위치에 무관한 불변 점 특징을 추출하고 시간 복잡도 감소와 정확한 대응점 산출을 위해 유사도 평가함수와 Graham 탐색 방법을 이용한 새로운 정합방법을 제안한다. 또한 카메라 외부인수 산출단계에서는 LM 알고리즘의 수렴도를 향상시키기 위해 2단계 카메라 동작인수 산출방법을 제안한다. 실험에서는 다양한 실내영상을 이용하여 기존방법과 비교, 분석함으로써 제안한 알고리즘의 우수성을 입증하였다.
본 논문에서는 DEM(Digital Elevation Model)과 산 영상을 매핑하여 3차원 정보를 생성하고 이를 이용한 비전기반 카메라 위치인식방법을 제안한다. 일반적으로 인식에 사용된 영상의 특징들은 카메라뷰에 따라 내용이 변해 정보양이 증가하는 단점이 있다. 본 논문에서는 카메라뷰에 무관한 기하학의 불변특징을 추출하고 제안하는 유사도 평가함수와 Graham 탐색방법을 사용한 정확한 대응점을 산출하여 카메라 외부인수를 계산하였다. 또한 그래픽이론과 시각적 단서를 이용한 3차원 정보생성 방법을 제안하였다. 제안하는 방법은 불변 점 특징 추출단계, 3차원 정보 생성단계, 외부인수 산출단계의 3단계로 구성된다. 실험에서는 제안한 방법과 기존방법을 비교, 분석함으로써 제안한 방법의 우월성을 입증하였다.
Computer vision system is broadly adapted like as autonomous vehicle system, product line inspection, etc., because it has merits which can deal with environment flexibly. However, for applying it for that industry, it has to clear the problem that recognize position parameter of itself. So that computer vision system stands in need of camera calibration to solve that. Camera calibration consists of the intrinsic parameter which describe electrical and optical characteristics and the extrinsic parameter which express the pose and the position of camera. And these parameters have to be reorganized as the environment changes. In traditional methods, however, camera calibration was achieved at off-line condition so that estimation of parameters is in need again. In this paper, we propose a method to the calibration of camera using line correspondence in image sequence varied environment. This method complements the corresponding errors of the point corresponding method statistically by the extraction of line. The line corresponding method is strong by varying environment. Experimental results show that the error of parameter estimated is within 1% and those is effective.
본 논문에서는 불변 점 특징에 기반한 카메라 동작인수 측정방법을 제안한다. 일반적으로 영상의 특징정보는 카메라 뷰포인트에 따라 변하는 단점이 있어 시간이 지나면 정보량이 증가하게 된다. 또한 카메라 외부인수 산출을 위한 비선형 최소제곱 측정을 이용한 LM 방법은 초기값에 따라 최소점에 근접하는 반복회수가 다르고 지역 최소점에 빠질 경우 수렴시간이 증가하는 단점이 있다. 본 논문에서는 이러한 문제를 개선하기 위해 첫째, 기하학의 불변 벡터를 사용하여 특징 모델을 구성하는 것을 제안하였다. 둘째, 2D 호모그래피와 LM 방법을 이용하여 정확도와 수렴도를 향상시키는 2단계 측정 방법을 제안하였다. 실험에서는 제안한 알고리즘의 우수성을 입증하기 위해 기존방법과 제안한 방법을 비교 분석하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권4호
/
pp.297-301
/
2005
In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.
본 논문에서는 3차원 공간 내의 2차원 평면에 존재하는 특징점을 검출한 다음 이를 기반으로 실시간 카메라 추적을 수행하기 위한 방법을 제안한다. 제안된 방법은 두 단계를 거쳐서 수행된다. 먼저 3차원 공간 내에서 다수의 특징점을 검출한 다음 동일 평면 상에 존재하는 특징점들만을 선별한다. 그리고 특징점들이 존재하는 평면 객체와 카메라 영상 평면 사이의 사영기하(projective geometry) 관계를 추정한 다음 이를 기반으로 카메라의 외부 파라미터(extrinsic parameter)를 추정한다. 실험 과정에서 별도의 특수 조명은 이용하지 않으며 일반적인 조명이 갖추어진 실내 환경 내에서 실험을 수행하였다. 제안된 방법은 기존의 방법과는 다르게 실시간으로 평면 객체 상의 새로운 특징점을 검출하여 카메라 추적에 이용함으로써 카메라 자세정보 초기화를 위한 기준 특징점(reference feature)이 검출 불가능한 상황에서도 카메라의 추적이 가능하다는 장점을 갖고 있다. 실험을 통하여 제안된 방법은 평균 5~7픽셀 정도의 재사영 오차를 발생시킴을 확인할 수 있었다. 이는 영상의 해상도를 고려했을 때 상대적으로 작은 값으로 간주될 수 있으며, 기준 특징점이 영상 내에 존재하지 않은 환경에서도 카메라 추적을 수행할 수 있음을 알 수 있다.
본 논문에서는 카메라의 뷰포인트에 무관한 효율적인 불변특징을 기반으로 카메라의 동작인수를 산출하는 방법을 제안한다. 기존연구에서 사용된 특징정보는 카메라의 뷰포인트에 따라 변하기 때문에 정보양이 증가하여 정확한 특징추출이 어렵다. 또한 카메라 외부인수 산출을 위해 사용되는 LM(Levenberg-Marquardt)방법은 정확하게 목표 값에 수렴하지만 작은 스텝크기로 최소화를 진행하므로 소요시간이 긴 단점이 있다. 따라서 본 논문에서는 뷰포인트에 무관한 불변특징 추출방법과 이 특징들을 이용하여 2D 호모그래피로 찾은 카메라 동작인수를 LM 방법의 초기값으로 사용, 정확성과 수렴도를 향상시키는 2단계 카메라 동작인수산출 방법을 제안한다. 제안하는 방법은 특징 추출단계, 정합 단계, 2단계 카메라 동작인수 산출단계로 구성된다. 실험에서는 다양한 실내영상으로 제안한 방법과 기존 방법을 비교, 분석함으로써 제안한 알고리즘의 우수성을 입증하였다.
A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.
멀티모달 다중 카메라 시스템은 동일 기종이 아닌 적외선 열화상 카메라와 광학 카메라를 이용하여 구성한 스테레오 형태의 시스템이다. 본 논문에서는 열화상 카메라와 광학카메라에서 동시에 인식이 가능한 전용 타겟을 제작하여 스테레오 보정을 진행하였다. 일반적인 스테레오 교정에서는 두 카메라 사이의 내부 파라미터와 외부 파라미터를 이용하여 교정을 진행 하지만, 본 연구에서는 각각의 영상에서 코너점을 검출하고, 검출된 코너점의 좌표를 이용하여 두 영상 사이의 픽셀 오차율, 영상의 회전정도 및 영상의 크기 차이를 구한다. 이를 이용하여 기하학적 변환중 하나인 어파인 변환을 이용하여 보정을 진행 하였으며, 최종적으로 보정된 영상에 매핑되는 영역을 재구성하여 최종 결과 영상을 구했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.