• Title/Summary/Keyword: callus-like tissue

Search Result 18, Processing Time 0.026 seconds

Development of Herbicide Resistant Plant Through Plant Tissue Culture (제초제(除草劑) Butachlor 및 Simetryne에 저항성(抵抗性)인 식물체(植物體) 선발육성(選拔育成))

  • Kim, K.U.;Kim, S.H.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.200-207
    • /
    • 1987
  • This study was conducted to select and develop herbicide resistant plant through tissue culture. Growth response of seedlings and callis of various rice varieties with Echinochloa species was assessed under the treatment of various rates of butachlor [N-(butoxy methyl)-2-chloro-2', 6'-diethyl acetamide] and simetryne [2,4-bis(ethyl amino)-6-methyl thio-1,3,5-triazine]. Further, succinate dehydrogenase activity was determined in herbicide treated callus to characterize different response of plants to herbicide. Rice variety like Sangpung showed relative resistance in both callus and seedling states against butachlor, indicating maintenance of resistance. However, in the simetryne treatment, the similar response was not observed in callus and seedling state, although there was a great different response among plant materials against simetryne. Rice variety which exhibited resistance in callus and seedling states showed low succinate dehydrogenase inhibition index. Succinate dehydrogenase inhibition index can be used as an important marker characters to differentiate varietal response of plant to herbicide. Rice plant was differentiated from butachlor and simetryne tolerant callus treated at $2.5{\times}10^{-5}$ M is growing under the growth chamber and can be used for resistant source.

  • PDF

Establishment of efficient Alstromeria callus induction system using node culture and various hormones (마디배양과 다양한 호르몬을 이용한 효율적인 알스트로메리아 캘러스 유도 시스템 체계 확립)

  • Yang, Hwan Rae;Lee, Sang Hee;Kim, Jong Bo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.413-416
    • /
    • 2019
  • Alstroemeria (Alstroemeriaceae) is one of the most important cut flowers in international market. Especially, characteristics like long vase-life, various colors, tolerance to low temperature and a low energy requirement during cultivation have stimulated this success. Because of its characteristics such as low multiplication rates, time-consuming process and high risk of carrying viral disease, in vitro propagation techniques based on rhizome meristems culture have been developing nowadays. The callus induction has various cultivation sites compared with the direct plant generation method, and if the callus is maintained well, the plant differentiation can be performed simultaneously while maintaining the callus, so that it can be used for mass proliferation. In this study, we tested various hormones and cultivars for efficient callus induction. As a result of culturing between the nodes and the internodes, the callus began to be formed after 8 weeks, and the calli incidence in the nodes was higher than that between the internodes. Also, in the comparison of 2,4-D and picloram, the callus incidence rate was up to 2 times higher in the medium treated with 2,4-D. Using these results, it is thought that it will help establish the system of mass propagation system of Alstroemeria and cultivate new varieties.

Auxin-like Effect of the Antibiotic Carbenicillin on Organogenesis of Leaf Discs of Tobacco (Nicotiana tabacum L. cv. BY-4) (담배 (Nicotiana tabacum L. cv. BY-4) 잎절편의 기관분화에 대한 항생제 carbenicillin의 auxin 유사효과)

  • 배창휴;양덕춘;이효연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.469-474
    • /
    • 2000
  • Effect of the antibiotic carbenicillin on callus and shoot formation from the leaf disc culture of tobacco (Nicotiana tabacum L. cv. BY-4) was examined. The number of shoot induced from the leaf explants was decreased as the amount of carbenicillin increased from 250 mg/L to 2,000 mg/L on MS medium containing 0.5 mg/L of BAP or kinetin. In addition, calli formation from the leaf explants was increased by the treatment of 250 mg/L ∼ 500 mg/L carbenicillin with or without 0.5 mg/L of 2,4-D or NAA. However, the fresh weight of 4-week-cultured explants was decreased with increasing carbenicillin from 250 mg/L to 2,000 mg/L on MS medium containing 0.5 mg/L of 2,4-D or NAA. These results indicate that carbenicillin has an auxin-like effect, such as promoting callus formation and inhibiting shoot induction. It leads to the conclusion that the auxin-like property should be taken into account for the production of transgenic plants via Agrobacterium-mediated transformation.

  • PDF

Anatomical Observation of Somatic Embryogenesis in Oenanthe javanica ($B^{L}.$) DC. (미나리 체세포 배발생과정의 해부학적 관찰)

  • Gab Cheon KOH;Chang Soon AHN
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.323-327
    • /
    • 1995
  • This experiment was carried out to observe the origin and developmental pattern of somatic embryos of Oenanthe javanica ($B^{L}.$) DC. The experiment included observation of embryogenic cells and their development stages by light microscope, transmission electron microscope and scanning electron microscope. The embryogenic cells, which were smaller than non-embryogenic cells in size with expanded nucleus and dense cytoplasm. When stained with hematoxylin, the embryogenic cells were readily distinguished from the non-embryogenic cells of which cell walls were stained with safranin. It was observed at somatic embryos developed from single cells on the epidermis of developing embryos or in the surface or inside of embryogenic clumps by segmentation pattern. Observation with a transmission electron microscope revealed that the embryogenic cells had dense cytoplasm expanded nucleus, small vacuoles, large amyloplasts containing starch grains, and abundant organelles including lipid bodies. Under a scanning electron microscope, embryogenic callus was shown to consist of very smaller cells than non-embryogenic cells in an orderly arrangement and covered with a net-like structure, while the non-embryogenic callus consisted of large cells, irregular in size and arrangement, and covered with a gelatin-like material.

  • PDF

Tissue-cultured regeneration and ecological values in major bamboo species

  • Sharma, Avinash;Manpoong, Chowlani;Gohain, Anwesha;Pandey, Himanshu;Padu, Gompi;Aku, Hage
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.218-242
    • /
    • 2022
  • Background: Promising specific growth regulators are employed in the tissue cultures of various bamboo species. Specific natural hardening mixtures support the acclimatization and adaptation of bamboo under protected cultivation. Results: The growth regulators like 2, 4-Dichlorophenoxyacetic acid (2, 4-D), Naphthaleneacetic Acid (NAA), Thidiazuron (TDZ), 6-Benzylaminopurine (BAP), Kinetin, Gelrite, Benzyl Adenine (BA), Indole Butyric Acid (IBA), Coumarin, Putrescine, Gibberellic acid (GA3), Indole Acetic Acid (IAA) has been widely used for callus induction, root regeneration and imposing plant regeneration in various species of bamboo such as Bambusa spp. and Dendrocalamus spp. Different combinations of growth regulators and phytohormones have been used for regenerating some of the major bamboo species. Natural hardening materials such as cocopeat, vermicompost, perlite, cow dung, farmyard manure, compost, soil, garden soil, and humus soil have been recommended for the acclimatization and adaptation of bamboo species. Standard combinations of growth regulators and hardening mixtures have imposed tissue culture, acclimatization, and adaptation in major bamboo species. Conclusions: Bamboo contributes to soil fertility improvement and stabilization of the environment. Bamboo species are also involved in managing the biogeochemical cycle and have immense potential for carbon sequestration and human use. This paper aims to review the various growth regulators, natural mixtures, and defined media involved in regenerating major bamboo species through in vitro propagation. In addition, the ecological benefits of safeguarding the environment are also briefly discussed.

Development of Herbicide(Paraquat) Tolerant Plant Through Tissue Culture- 1. Mechanism of Plant Tolerance to Paraquat (농약(제초제)(農藥(除草劑)) Paraquat에 대한 저항성(抵抗性) 식물체(植物體) 선발육성(選拔育成)- 제1보(第1報) Paraquat에 대한 식물(植物)의 내성기작(耐性機作))

  • Kim, K.U.;Kim, D.U.;Kwon, S.T.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.191-200
    • /
    • 1986
  • The study was conducted to screen paraquat-tolerant plant species among crops and weeds, using the response of plant like leaf disc discoloration, visual injury and dry weight in the presence of paraquat. Mechanism of paraquat-tolerance was investigated in strains of soybean through evaluating activities of superoxide dismutase and peroxidase and the multiplication of callus derived from soybean cotyledon. In crops, Kwanggyo has been selected as a paraquat-tolerant variety among soybean cultivars tested, and Hood as a susceptible one. In weeds, Polygonum aviculare, Chenopodium album and Pinellia ternata were evaluated as the paraquat resistant species, providing the possibility for the donor plant species for paraquat resistance. Activity of superoxide dismutase known to detoxify paraquat was markedly greater in Kwanggyo, a paraquat-tolerant cultivar than in Hood, a susceptible one. In addition, the similar response like superoxide dismutase was observed in peroxidese activity. The greater inhibition of callus multiplication was determined in Hood, a susceptible one than a tolerant one, Kwnggyo. Based on all the informations, it is strongly proposed that paraquat tolerance in soybean is due to destruction of $O_2^-$ by elevated concentration of superoxide dismutase in the tolerant cultivar.

  • PDF

Investigation of Medicinal Substances from in vitro Cultured Cells and Leaves of Artemisia princeps var. Orientalis (쑥의 잎과 기내 배양세포로부터 약용물질의 탐색)

  • Shin, Dong-Ho;In, Jun-Gyo;Yu, Sang-Ryul;Choi, Kwan-Sam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • The young leaves of A. princeps have been a well known for a crude medicine and used in treatment of colic pain, vomiting and menstrual irregularity. Based on TLC and HPLC and used an artemisinin, an anti-malarial compounds which is believed to be detected only in A. annuaup so far can be biosynthesized in A. princeps. To investigate the production of secondary metabolites like artemisinin in cultured cells, the cell culture of A. princeps was established. Callus and suspension cultured cells of A. princeps were induced and grown highest in MS media containing $0.2\;mg/{\ell}$ 2,4-D, $0.1\;mg/{\ell}$ BAP and 2% sucrose. Different metabolites from in vitro cultured cells (callus and suspension cultured cell) and intact plants were analyzed by TLC analysis. As a result, we can confirm that in vitro culture has a potential for mass production of secondary metabolites from A. princeps.

Isolation of Hypervirulent Agrobacterium spp from Korea and Application for Transformation of Tobacco (한국산 고감염 Agrobacterium spp의 분리 및 연초의 형질전환에 이용)

  • 양덕춘;정재훈;이정명
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.207-217
    • /
    • 1998
  • Total of 78 strains were characterized based on the morphological characteristics of colonies isolated on Schroth, and New & Kerr's media for selection of hypervirulent wild-type Agrobacterium spp from galls, hairy root-like process and soil of Populus, Malus, Salix and Diopyros in Korea. Among them, 48 strains were able to induce tumors in carrot disc. Hypervirulent A. tumefaciens SP101 and SM042 were identified as biotype 1 and biotype 2, respectively, These strains formed fast growing, larger tumors as compared to those induced by other strains. The binary vector pGA643 with kanamycin resistant gene was mobilized from E. coli MC100 into A. tumefaciens strain SM042 isolated from soil, and/or disarmed vector PC2760 using a triparental mating method with E. coli HB101/pRK2013, and transconjugants, A. tumefaciens SM643 and PC643 were obtained in minimal media containing kanamycin and tetracycline. Tobacco tissues were cocultivated with conjugant Agrobacterium and then transferred to selective medium with 2,4-D and kanamycin to induce the transformants. Calli were formed more efficiently in cocultivation with A. tumefaciens SM643 than that with A. tumefaciens PC643. Most of calli transformed with A. tumefaciens PC643 were friable and regenerated into normal plantlets, while the calli transformed with A. tumefaciens SM643 were compact, hard, and mixed with friable calli. The friable calli formed normal shoots, while compact calli did not form shoots but only grew to typical compact tumor calli. When the shoots formed directly from tobacco stems without callus induction after transformation by A. tumefaciens SM643 with wild-type Ti-plasmid, normal transformed plants can be induced without using disarmed Ti-plasmid.

  • PDF