• Title/Summary/Keyword: calibration equation

Search Result 311, Processing Time 0.034 seconds

A New Calibration Equation for Predicting Water Contents With TDR (TDR의 함수비 예측을 위한 새로운 보정방정식)

  • Song, Minwoo;Kim, Daehyeon;Choi, Chanyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • The objective of the study is to verify a new calibration equation of dry density and water contents with TDR. Since the traditional calibration equation was proposed, some research to develop a new calibration equation has been conducted by several researchers. As traditional calibration equation is difficult to be applied for loose soil and fine-grained soil at high water contents, this study developed a new calibration equation. Thus, this study introduces a new calibration equation and its applicability by comparing TDR test results with conventional test results. Based on the analyses, the calibration equation for water content has large error. A new calibration equation was proposed and it showed more than 95% accuracy for estimating water content of soil.

Analysis of Geometric Calibration Accuracy using the Results from IR Channel Nominal Radiometric Calibration (적외채널 기본 복사보정 결과를 이용한 기하보정 처리의 정확도 분석)

  • Seo, Seok-Bae;Kwon, Eun-Joo;Jin, Kyoung-Wook
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The nominal radiometric calibration equation and additional five algorithms are applied in the infrared channel radiometric calibration for the COMS (Communication, Ocean, Meteorological Satellite) MI (Meteorological Imager). The processing end time of the radiometric calibration is directly related with the start time of geometric calibration processing since the geometric calibration processing is followed by that of the radiometric calibration. This paper describes comparison and analysis results for geometric calibration processing using two types of the radiometric calibration results, outputs from only the nominal radiometric calibration equation and outputs from the complete one (the nominal radiometric calibration equation with additional five algorithms), to propose a method with the earlier start time of the geometric calibration processing. Experimental results show that both of radiometric calibration results, from the nominal radiometric calibration equation with a fast processing speed and from the complete one with accurate radiometric values, can be used in the geometric calibration as the appropriate inputs because those processing results satisfied the requirements of geometric calibration processing accuracy. Thus the radiometric calibration results from the nominal radiometric calibration equation can be used to improve geometric calibration processing time.

근적외 분광분석법을 이용한 버어리종 잎담배 화학성분 분석

  • 김용옥;장기철;이경구
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 1999
  • This study was carried out to analyze chemical components in burley tobacco using near infrared spectroscopy(NIRS). Samples were collected in '96 and '97 crop year. Calibration equations were developed by modified partial least square. The standard error performance(SEP) of '96 crop year samples between NIRS and standard laboratory analysis were 0.25% for nicotine, 0.18% for total nitrogen, 0.59% for crude ash, 0.32% for ether extracts, and 0.14% for chlorine, respectively. The analytical results of '97 crop year samples were similar to those of '96 crop year samples. The analytical result of '97 crop year samples analyzed by '96 calibration equation was more inaccurate than that of '96 crop year samples. The SEP of '96 or '97 crop year samples applying calibration equation derived from '96 plus '97 crop year samples was similar to that of '96 or '97 crop year samples analyzed by '96 or '97 calibration equation, respectively. The SEP of '97 crop year samples analyzed by calibration equation derived from '96 plus '97 crop year samples was more accurate than that of '97 crop year samples analyzed by '96 calibration equation. To improve the analytical inaccuracy caused by the difference of crop year between calibration and prediction samples, we need to include the prediction sample spectra which were different from calibration sample spectra in recalibration sample spectra, and then develop recalibration equation. The NIRS can apply to analyze burley leaf tobacco, leaf process or tobacco manufacturing process which were required the rapid analytical result.

  • PDF

Calibration Equation for VTA Including the Effect of Ambient Temperature Drift (온도변화를 고려한 가변온도형 열선유속계의 교정식)

  • Lee, Shin-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.99-104
    • /
    • 2000
  • Calibration equation for Variable Temperature Anemometer(VTA) has been tested for measured velocity-output data and the calibration process has been compared with that of Constant Temperature Anemometer(CTA). VTA has greater sensitivity than that of any other conventional anemometers, but to be more popular technique in flow field measurement, simple, accurate and well established calibration process should be suggested. To meet this purpose, similar calibration method used for CTA has been adopted for VTA and finally calibration equation for VTA including the effect of temperature drift has been proposed.

  • PDF

The Prediction of Blending Ratio of Cut Tobacco, Expanded Stem, and Expanded Cut Tobacco in Cigarettes using Near Infrared Spectroscopy (근적외분광법을 이용한 권련 중 일반각초, 팽화주맥 및 팽화각초 배합비 분석)

  • 김용옥;정한주;김기환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • This study was carried out to predict blending ratio of cut tobacco(CT), expanded stem(ES), and expanded cut tobacco(ECT) in cigarettes. CT, ES, and ECT samples from A brand were, ground and blended with reference to A blending ratio, and scanned by near infrared spectroscopy(NIRSystem Co., Model 6500). Calibration equations were developed and then determined blending ratio by NIRS. The standard error of calibration(SEC) and performance(SEP) of C factory samples between NIRS and known blending ratio were 0.97%, 1.93% for CT, 0.50%, 1.12 % for ES and 0.68%, 1.10% for ECT, respectively. The SEP of CT, ES and ECT of Band D factory samples determined by C factory calibration equation were more inaccurate than those of C factory samples determined by C factory calibration equations. These results were caused by the difference of CT, ES and ECT spectra followed by each factory. The SEP of CT, ES and ECT of Band D factories determined by calibration equations derived from each factory samples were more accurate than those of determined by calibration equation derived from C factory samples. Each factory SEP of CT, ES and ECT determined by calibration equation derived from all calibration samples(B+C+D factory) was similar to that determined by calibration equation derived from each factory samples. To improve the analytical inaccuracy caused by spectra difference, we need to apply a specific calibration equation for each factory sample. Data in development of specific calibrations between sample and NIRS spectra might supply a method for rapid determination of blending ratio of CT, ES, and ECT.

  • PDF

Calibration Update for the Measuring Total Nitrogen Content in Rice Plant Tissue Using the Near Infrared Spectroscopy

  • Kwon, Young-Rip;Song, Young-Eun;Choi, Dong-Chil;Ryu, Jeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • The aim of the present study was to update the calibration that is used for the measurement of the total nitrogen content in the rice plant samples by using the visible and near infrared spectrum. Before the equation merge, correlation coefficient of calibration equation for nitrogen content on each rice parts was 0.945 (Leaf), 0.928 (Stem), and 0.864 (Whole plant), respectively. In the calibration models created by each part in the rice plant under the various regression method, the calibration model for the leaf was recorded with relatively high accuracy. Among of those, the calibration equation developed by Partial least squares (PLS) method was more accurate than the Multiple linear regression (MLR) method. The calibration equation was sensitive based on variety and location variations. However, we have merged and enlarged various of the samples that made not only to measure the nitrogen content more accurately, but also later sampling populations became more diversified. After merging, $R^2$ value becomes more accurate and significantly to 0.950 (L.), 0.974 (S.), 0.940 (W.). Also, after removal of outlier, R2 values increased into 0.998, 0.995, and 0.997. In view of the results so far achieved, Standard error of prediction (SEP) and SEP (C) were reduced in the stem and whole plant. Biases were reduced in the leaf, stem as well as whole plant. Slopes were high in the stem. Standard deviation reduced in the stem but $R^2$ was high in the stem and whole plant. Result was indicated that calibration equation make update, and updating robust calibration equation from merge function and multi-variate calibration.

Comparison of linear and non-linear equation for the calibration of roxithromycin analysis using liquid chromatography/mass spectrometry

  • Lim, Jong-Hwan;Yun, Hyo-In
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Linear and non-linear regressions were used to derive the calibration function for the measurement of roxithromycin plasma concentration. Their results were compared with weighted least squares regression by usual weight factors. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = ax$^{b}$ + c (b $\neq$ 1) is compared with the commonly used linear equation, y = ax + b, as well as the quadratic equation, y = ax$^{2}$+ bx + c. In the calibration curve (range of 0.01 to 10 ${\mu}g/mL$) of roxithromycin, both heteroscedasticity and nonlinearity were present therefore linear least squares regression methods could result in large errors in the determination of roxithromycin concentration. By the non-linear and weighted least squares regression, the accuracy of the analytical method was improved at the lower end of the calibration curve. This study suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low dose calibration data which exhibit slight curvature.

Cross-Calibration of Domestic Devices and GE Lunar Prodigy Advance Dual-Energy X-Ray Densitometer Devices for Bone Mineral Measurements (국산 이중에너지 방사선흡수 골밀도 장치와 GE Lunar Prodigy의 교차분석 식 도출에 관한 연구)

  • Kim, Jung-Su;Rho, Young-Hoon;Lee, In-Ju;Kim, Kyoung-Ah;Lee, In-Ja;Kim, Jung-Min
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.27-31
    • /
    • 2017
  • Reliable follow-up of bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA) is essential in clinical practice. When there is a difference in the BMD values from DXA systems in the same patient, cross calibration equation is required for the reliable follow-up. Unfortunately, no equation is existed in BMD measure between GE Lunar Prodigy Advance (US, GE Healthcare; LPA) and Osteosys Dexxum T (Korea, Osteosys; ODT) DXA systems. In this study, we evaluate the agreement of BMD values between LPA and ODT and suggest the cross calibration equation using European spine phantom (ESP) with two systems. We performed BMD measurements using ten scans with ESP in each DXA systems. We compared BMD values and calculated cross calibration equation by linear regression analysis. The comparison between the LPA and ODT bone densitometers used the ESP. Compared to the ESP BMD values, ODT underestimated 14.36% and LPA overestimated 12.96%. The average of total BMD measurement values acquired with ODT were 21.44% lower than those from LPA. Cross-calibration equation for LPA and ODT was derived from ESP. We calculated simple cross calibration equation for LPA and ODT DXA systems. Cross-calibration equation is necessary for the reliable follow-up of BMD values in two different systems.

근적외 분광분석법을 이용한 황색종 잎담배의 화학성분 분석

  • 김용옥;이경구;장기철;김기환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.183-190
    • /
    • 1998
  • This study was conducted to analyze chemical components in flue-cured tobacco using near infrared spectroscopy(NIRS). Samples were collected in '96 and '97 crop year and were scanned in the wavelengths of 400 ~ 2500 nm by near infrared analyzer(NIRSystem Co., Model 6500). Calibration equations were developed and then analyzed flue-cured samples by NIRS. The standard error of calibration(SEC) and performance (SEP) of '96 crop year samples between NIRS and standard laboratory analysis(SLA) were 0.18% and 0.24% for nicotine, 1.60% and 1.77% for total sugar, 0.13% and 0.15% for total nitrogen, 0.58% and 0.68% for crude ash, 0.23% and 0.28% for ether extracts, and 0.09% and 0.08% for chlorine, respectively. The coefficient of determination($R^2$) of calibration and prediction samples between NIRS and SLA of '96 crop year samples was 0.94~0.99 and 0.83~0.97 depending on chemical components, respectively. The SEC and SEP of '97 crop year samples were similar to those of '96 crop year samples. The SEP of '97 crop year samples which were analyzed using '96 calibration equation was 0.32 % for nicotine, 2.72% for total sugar, 0.14 % for total nitrogen, 1.00 % for crude ash, 0.48 for ether extracts and 0.17% for chlorine, respectively. The prediction result was more accurate when calibration and prediction samples were produced in the same crop year than those of the different crop year. The SEP of '96 and '97 crop year samples using calibration equation which was developed '96 plus '97 crop year samples was similar to that of '96 crop year samples using 96 calibration equation and that of '97 crop year samples using '97 calibration equation, respectively. The SEP of '97 crop year samples using calibration equation which was developed '96 plus '97 crop year samples was lower than that of '97 crop year samples analyzed by '96 calibration equation. To improve the analytical inaccuracy caused by the difference of crop year between calibration and prediction samples, we need to include the prediction sample spectra which are different from calibration sample spectra in recalibration sample spectra, and then develop recalibration equation. Although the analytical result using NIR is not as good as SLA, the chemical component analysis using NIR can apply to tobacco leaves, leaf process or tobacco manufacturing process which demand the rapid analytical result.

  • PDF

An Experimental Study on Density Tool Calibration (밀도검층 검출기 보정에 관한 기초 연구)

  • Kim, Yeonghwa;Kim, Kiju;Lim, Heontae;Kim, Jihoon;Kong, Nam-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • Series of basic experiments for current density calibration by user process and for density calibration using geophysical model borehole were made. We tried to find the sonde response characteristics for current calibration using water and aluminium field jig, and using the equation of half life of 137Cs source. The result of calibration test made in a geophysical model borehole built first in Korea shows a perfect linear calibration equation. By adopting this calibration equation we could estimate the limitation as well as possibility of current density calibration by user process.

  • PDF