• Title/Summary/Keyword: calcium utilization

Search Result 184, Processing Time 0.029 seconds

Effect of Calcium and Boron Intakes on Calcium Balance Status in Ovariectomized Rats (난소절제 흰쥐에 있어 칼슘과 보론 섭취수준이 칼슘 평형상태에 미치는 영향)

  • Choi, Mi-Kyeong;Kim, Mi-Hyun;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.48-54
    • /
    • 2006
  • This study was conducted to investigate the effect of calcium and boron intakes on calcium utilization in ovariectomized (OVX) rats. Rats were divided into 9 groups and fed diets containing various levels of calcium $(0.1\%,\;0.5\%,\;1.5\%)$ and boron (0.5 ppm, 50 ppm, 100 ppm) for 4 weeks. The half of rats in each group were ovariectomized and the others were sham-operated. Rats were fed same diets for 8 weeks after operation. Feed intake and weight gain were significantly increased as the dietary calcium was increased and those of OVX group were higher than in sham-operated group. Feed efficiency ratio was significantly higher in OVX group than that in sham-operated one. With boron supplementation, serum calcium level was significantly increased in low-calcium group, but decreased in adequate/high-calcium group. In calcium balance, calcium intake was significantly increased with increasing levels of calcium and boron and higher in OVX group than that in sham-operated one. With increasing calcium intake, fecal and urinary calcium excretions were significantly increased. Urinary calcium excretion was significantly decreased with increment of boron intake. Apparent calcium absorption of adequate-calcium OVX group was the highest among the groups. Daily calcium retention was significantly increased as the dietary calcium was increased and that of high-calcium OVX group was higher than high-calcium sham-operated group. According to these results, the boron supplementation increased the calcium intake and decreased the urinary calcium excretion. Therefore, it could be suggested that the boron supplementation may be complementary to calcium nutrition and useful for bone health.

Effect of Dietary Microbial Phytase on Laying Performance, Egg Quality, Phosphorus Utilization and Nutrient Metabolizability in Laying Hens (산란계에 Microbial Phytase 첨가시 산란율, 계란 품질, 인 이용율 및 영양소 대사율에 미치는 영향)

  • Jang, H.D.;Hyun, Y.;Kim, H.S.;Hwang, I.W.;Yoo, J.S.;Kim, H.J.;Shin, S.O.;Hwang, Y.;Zhou, T.X.;Chen, Y.J.;Cho, J.H.;Kim, I.H.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2008
  • The study was conducted to evaluate the effects of dietary microbial phytase on egg productivity, egg quality, phosphorus utilization and nutrient digestibility in laying hens. The animals used in the experiment were a total of 120 Hy-Line Brown laying hens (32 weeks old). Dietary treatments included 1) CON (basal diet), 2) LP (low phosphorus diet) 3) NP (low phosphorus diet + 0.03% normal microbial phytase) and 4) CP (low phosphorus diet + 0.03% coated microbial phytase). Six laying hens were allotted to a block (pen) with five replicated. Through the whole period of experiment, egg production was significantly increased in CON and CP treatments compared to LP treatment (P<0.05). CON, CP and NP treatments significantly increased their egg shell breaking strength and egg shell thickness compared to LP treatment (P<0.05). CON, CP and NP treatments resulted higher yolk color and Haugh unit than LP treatment (P<0.05). Calcium and inorganic phosphorus contents in blood were higher in CP treatment compared to LP treatment (P<0.05). Dry matter digestibility and nitrogen digestibility were greater in CP treatment than CON, LP and NP treatments (P<0.05). Crude ash was increased in CON, CP and NP treatments compared to LP treatment (P<0.05). Calcium digestibility and phosphorus digestibility were significantly improved in CP and NP treatments than CON and LP treatments (P<0.05). Calcium retention of CON, CP and NP treatments were higher than LP treatment (P<0.05). Phosphorus retention was increased in CP and NP treatments compared to CON and LP treatments (P<0.05). LP treatment significantly increased their nitrogen, calcium excretion compared to CON, CP and NP treatments (P<0.05). Phosphorus excretion was decreased in LP, CP and NP treatments compared to CON treatment (P<0.05). In conclusion, CP treatment improved egg production, egg quality, inorganic calcium and phosphorus in blood, calcium and phosphorus retention and nutrient digestibility and decreased nitrogen and calcium excretion in laying hens.

Utilization of Industrial Wastes as Fertilizer (산업폐기물(産業廢棄物)의 비료화(肥料化))

  • Shin, Jae-Sung;Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.68-79
    • /
    • 1984
  • An increased population and rapidly expanding industrial development have led to enormous amounts of various domestic and industrial wastes. The proper disposal of ever-increasing wastes is a growing global problem. Land treatment is one of the rational approaches that are environmentally safe and economically practical. It has long been practised in many sites. Recycling of industrial wastes on agricultural land can provide better possible means for maintaining environmental quality and utilizing waste-resources. Even though industrial wastes are beneficial as soil amendment and fertilizer, they have some limitation on land application because of wide variability as well as physicochemical problem in their composition. A direct application of solid and liquid wastes on land is being practised in Korea and some experimental results are presented. The direct application of fermentation waste on rice resulted in a 6 percent yield increase. Another organic residue from glutamic acid fermentation is widely used not only as a direct application as a liquid fertilizer but also for a raw material of organic compound fertilizer. These wastes are much promising as sources of plant nutrients, since they have large amounts of nutrients, especially nitrogen with few toxic metals. On the other hand, fertilizers developed from inorganic industrial wastes include calcium silicate, calcium sulfate and ammonium sulfate. The calcium silicate fertilizer simply produced from slag, by-product of iron and steel manufacturing plant is one of the most successful example of the conversion of wastes to fertilizer and slag production capacity totals to over three million MT/year. About 200,000 MT of calcium silicate fertilizer is currently applied in the paddy rice every year. Calcium sulfate, a waste from the wet phosphoric acid process is to some extent used as a filler of compound fertilizers but quite large quantites are directly applied for the reclamation of tidal flat.

  • PDF

Production of Salicylic Acid from Naphthalene by Immobilized Pseudomonas sp. Strain NGK1

  • Shinde, Manohar;Kim, Chi-Kyung;Karegoudar, Timmanagouda-Baramanagouda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.482-487
    • /
    • 1999
  • The Pseudomonas sp. strain NGK1 (NCIM 5120) was immobilized in calcium alginate, agar, and polyacrylamide gel matrices. The salicylic acid-producing capacity of freely suspended cells was compared with immobilized cells in batches with a shake culture and continuous culture system in a packed bed reactor. Freely suspended cells ($4\times10^{10}cfu/ml$) produced 12 mM of salicylic acid, whereas cells immobilized in calcium alginate ($1.8\times10^{11}$cfu/g beads), agar ($1.8\times10^{11}$cfu/g beads), and polyacrylamide ($1.6\times10^{11}$cfu/g beads) produced 15, 11, and 16mM of salicylic acid, respectively, from naphthalene at an initial concentration of 25 mM. The continuous production of salicylic acid from naphthalene was investigated in a continuous packed bed reactor with two different cell populations. The longevity of the salicylic acid-producing activity of the immobilized cells from naphthalene was also studied in semi continuous fermentations. The immobilized cells could be reused 18, 13, and more than 20 times without losing salicylic acid-producing activity in calcium alginate-,agar-, and polyacrylamide-entrapped cells, respectively. The study reveals a more efficient utilization of naphthalene and salicylic acid production by the immobilized Pseudomonas sp. strain NGK1 as compared to the free cells.

  • PDF

Influence of Phytate and Low Dietary Calcium on Calcium, Phosphate and Zinc Metabolism by Growing Rats (Phytate와 저 Ca 섭취가 흰쥐의 성장기간 동안 Ca, P, Zn 대사에 미치는 영향)

  • 이종호
    • Journal of Nutrition and Health
    • /
    • v.26 no.2
    • /
    • pp.154-154
    • /
    • 1993
  • A factorial experiment was conducted to determine the influence of phytate(0 or 10g/kg diet) and calcium (Ca)(3 or 10g/kg diet) intakes on Ca, P and Zn metabolism by growing female rats. Food intake and weight were similar for the all groups, however, phytate ingestion for six weeks depressed femur growth. The low Ca plus phytate group showed the lowest Ca content of total femur and this was related to a significant decrease of Ca retention. Phytate intake depressed zinc(Zn) absorption in the first metabolic collection. This inhibitory effect of phytate on Zn absorption was improved in the low Ca plus phytate group after several weeks. Impared Zn absorption however remained in the high Ca plus phytate group which was reflected in the lowest Zn content of femur, phytate intake with high Ca also depressed phosphorous(P) absorption and serum and urinary P. These adverse effects of phytate on Zn and P absorption when the dietary Ca was high could explain reduced femur weight despite the highest concentration of femur Ca(mg/g ash) in this group. Results suggest that phytate can adversely affect not only Ca metabolism but Zn and P utilization. Thus, for the normal bone growth when phytate intake is high, the ingesion of Ca, P, Zn and other minerals should be enhanced.

Manufacturing of Calcium Silicate Cement Using Construction Waste (건설폐기물을 활용한 이산화탄소 반응경화 시멘트 제조에 관한 연구)

  • Lee, Hyang-Sun;Son, Bae-Geun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.47-48
    • /
    • 2023
  • In the domestic industrial sector, greenhouse gases emitted from the cement industry account for about 10%, with most of them generated during the cement clinker calcination process. During the calcination process, 57% of carbon dioxide is emitted from the decarbonation reaction of limestone, 30% from fuel consumption, and 13% from electricity usage. In response to these issues, the cement industry is making efforts to reduce carbon dioxide emissions by developing technologies for raw material substitution and conversion, improving process efficiency by utilizing low-carbon alternative heat sources, developing CO2 capture and utilization technologies, and recycling waste materials. In addition, due to the limitations in purchasing and storing industrial byproducts generated from industrial facilities, many studies are underway regarding the recycling of construction waste. Therefore, this study analyzes the manufacture of calcium silicate cement (CSC), which can store carbon dioxide as carbonate minerals in industrial facilities, and aims to contribute to the development of environmentally friendly regenerated cement using construction waste.

  • PDF

A Study on the Early-Age Strength Properties of Recycled Fine Aggregate Mortar Using Blast Furnace Slag (고로슬래그를 사용한 재생 잔골재 모르타르의 초기강도 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. Since hydroxide ion concentration of calcium hydroxide(Ca(OH)2) ion erupted from recycled fine aggregate newly produced is over 12. In recycled fine aggregate mortar transposing and using BFS powder, calcium hydroxide(Ca(OH)2) erupted from recycled fine aggregate played a role of stimulus from the day 3 and manifestation of compressive strength was slowly increased with mortar using natural fine aggregate and showed considerable increase from the day 7.

  • PDF

Evaluation of the Utilization of Carbon Dioxide Microbubble Mixing Water for Mineral Carbonation of Cement Materials (시멘트 재료의 광물탄산화를 위한 이산화탄소 마이크로버블 배합수 활용성 평가)

  • Nam, Min-Seok;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.205-206
    • /
    • 2023
  • In this study, the characteristics of cement were analyzed using carbon dioxide microbubble water as a mixed water for mineral carbonation of cement materials. Carbon dioxide reacts with the calcium compound of cement to produce calcium carbonate and affects the initial strength improvement. Therefore, in this study, temperature, air content, thermal analysis, and compressive strength tests were conducted to confirm the reaction between cement materials and carbon dioxide. As a result of the measurement, the reaction between cement and carbon dioxide was confirmed in a specimen using carbon dioxide microbubble water as a mixed water, which affected the initial strength improvement.

  • PDF

Calcination Condition for Recovery of Calcium from Cuttle Bone and Characteristics of Calcined Cuttle Bone Powder (갑오징어갑으로부터 칼슘의 회수조건 및 소성 칼슘의 특성)

  • CHO Moon-Lae;HEU Min-Soo;KIM Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.600-604
    • /
    • 2001
  • For the effective utilization of cuttle bone as a calcium powder, we examined calcination condition ($700^{\circ}C: 0\sim10\;hrs,\;800^{\circ}C:\;0\sim3\;hrs,\;900^{\circ}C:\;0\sim1\;hr\;and\;1,000^{\circ}C:\;0\sim30\;mins$) for recovery of calcium from raw cuttle bone powder (RCB) and characteristics of calcined cuttle bone powder (CCB) treated by optimal condition. During calcination of RCB, the yields was decreased, while total and soluble calcium contents and white index were increased up to constant calcination time ($8\;hrs\;at\;700^{\circ}C,\;2\;hrs\;at\;800^{\circ}C,\;45\;min\;at\;900^{\circ}C\;and\;20\;min\;at\;1,000^{\circ}C$). But, these after that almost unchanged. From these results, the optimal calcination conditions for recovery of calcium from RCB were revealed $8\;hrs\;at\;700^{\circ}C,\;2\;hrs\;at\;800^{\circ}C,\;45\;min\;at\;900^{\circ}C\;and\;20\;min\;at\;1,000^{\circ}C$. In the case of CCB treated for 2 hrs at $800^{\circ}C$, total calcium was about $70\%$, the major component was calcium oxide, and the structure consisted of porosity. The calcium solubility of CCB increased by 22 times compared to RCB. But, the pH of RCB was about 12.9. Therefore, for the effective utilization of RCB as a calcium powder, it requires a suitable modification operation for adjustment of pH ($pH\;2.0\~9.0$).

  • PDF

Efficacy of Supplemental Microbial Phytase on Laying Performance and Phosphorus Utilization II. Effect of Microbial Phytase at Different Phosphorus Levels and High Calcium Content on Laying Performance and Phosphorus Utilization (산란생산성과 인 이용성에 대한 Microbial Phytase의 첨가 효과 II. 무기태인 수주닝 다르고 칼슘수준이 높은 사료에 Microbial Phytase 첨가가 산란성 및 인 이용성에 미치는 영향)

  • 김상호;유동조;이상진;강보석;서옥석;최철환;이원준;류경선
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • Present study was conducted to investigate effects of microbial phytase in laying hen diets on utilization of non-phytate phosphorus(NPP) whose levels were adjusted to be adequate or lower than that of NRC requirements. Birds of control roup were fed a diet containing 0.275% NPP and 3.4% Ca, satisfying the NRC(1994) feeding standard. bird on T1, T2 and T3 were allowed to eat diets containing NPP at 100, 80 and 60%, respectively, of Control group, and 4.0% Ca level along with a microbial phytase added at a level of 300 DPU. Three hundred and sixty, ISA Brown layers, 23-week-old, divided into four treatment groups with three replications per treatment and 30 layers per replication were fed the diets for 12 weeks. Levels of feed intake were not different among the groups, The egg mass/feed intake ratio appeared better in T2 group by about 8%, though without a statistical significance, compared to that of control. Egg production fate tended to be improved over the control group by feeding the 100%(T1) and 80%(T2) NPP diets added with phytase, with a significant difference for T2(p<0.05). Mean egg weight and egg shell quality, measured by breaking strength and thickness of the egg shell, of the T2 group tended to show numerically better, without a significance than those of control. Furthermore, birds of the T2 group showed higher calcium and phosphorus contents in tibia by about 9%(p<0.05) than the control. Overall performances of birds in T1 appeared better than those of control, but tended to be lower than those of the T2. The birds in T3 performed similar to the those of the other dietary groups except the relatively low tibia calcium level. In conclusion, the results of this study suggest that supplementation of microbial phytase at a level of 300 DPU was effective to spare about 20% of NPP in laying hen diets without any adverse effects on production performances and bone quality.

  • PDF