• Title/Summary/Keyword: calcium sulfate

Search Result 337, Processing Time 0.022 seconds

Electrokinetic Restoration of Saline Soil Accumulated with Nitrate and Sulfate (질산염 및 황산염 집적 염류 토양의 전기역학적 개량)

  • Cho, Jung-Min;Jo, Sung-Ung;Kim, Do-Hyung;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • The electrokinetic transport characteristics of salts were investigated using nitrate and sulfate accumulated saline greenhouse soil. Within 8 days, 95% of nitrate was removed from the soil, while sulfate removal was 19% for 8 days. The low removal of sulfate came from adsorption reaction on the soil particles or organic matter and precipitation with calcium. Divalent cations such as calcium and magnesium were transported toward cathode via electromigration, and most monovalent cation such as potassium was removed. The pattern of residual electrical conductivity was similar with that of sulfate. Based on the results, electrokinetic technique is effective to restore nitrate-accumulated saline soil, but is not effective to restore sulfate-accumulated soil.

Atmospheric Nitrate, sulfate, Ammonium, and Calcium Concentrations at Forest Area in Jeiu Island (제주도 산림지역에서의 대기중 Nitrate, Sulfate, Ammonium, Calcium 농도 분석)

  • 김대준;강창희;허철구;이기호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.151-152
    • /
    • 2003
  • 대기중에는 토양입자나 해양입자와 같이 직접적으로 방출되는 입자상 물질 이외에 자연적으로 생성되거나 인간의 활동에 의하여 배출되는 유황, 질소산화물 및 유기물의 가스상 물질이 대기 화학 반응에 의하여 입자상 물질로 변환된 이차입자가 혼재되어 있다. 이러한 입자상물질은 $K^{+}$, $Na^{+}$, $Mg^{2+}$, NH$_4$$^{+}$, $Ca^{2+}$ 등의 양이온과 Cl$^{-}$, NO$_3$$^{-}$, SO$_4$$^{2-}$ 등의 음이온 성분으로 구성되어 있다. (중략)

  • PDF

The Operative Treatment of Displaced Intra-articular Calcaneal Fracture with Injectable Calcium Sulfate ($MIIG^{TM}$) (주사형 황산 칼슘($MIIG^{TM}$)을 이용한 전위성 종골 관절내 골절의 수술적 치료)

  • Ahn, Seong-Jun;Kim, Bu-Hwan;Song, Moo-Ho;Yoo, Seong-Ho;Seo, Sang-Hyok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.2
    • /
    • pp.221-225
    • /
    • 2007
  • Purpose: To evaluate the clinical results of operative treatment of the intra-articular calcaneal fracture with injectable calcium sulfate ($MIIG^{TM}$). Materials and Methods: Between March 2004 and October 2006, a total 19 intra-articular calcaneal fracture (16 patients) with a large bony defect that underwent operative treatment with plate fixation and injectable calcium sulfate ($MIIG^{TM}$) with minimum follow-up of one year following. The mean age at time of surgery was 44.7 years (23 to 54). All of the cases were type 2 and 3 on the basis of Sanders classification. The lateral L shaped approach was used in all cases. Full weight bearing on the affected extremity was regained at an average 10 weeks postoperatively. Results: The mean Bohler angle was improved from $2^{\circ}$ ($-18.5{\sim}12.5^{\circ}$) preoperatively to $23.8^{\circ}$ ($12{\sim}37.5^{\circ}$) and the angle at last follow-up was $22.5^{\circ}$ ($11.5{\sim}37.5^{\circ}$), showing about 0.3 degree decline compared to postoperative Bohler angle. Only two case of whitish leakage of graft material but other complication were none. Conclusion: $MIIG^{TM}$ augumentation of displaced intra-articular calcaneal fracture with large bone defect seems to bo useful method for initial stabilized and plate fixation.

  • PDF

Synthesis of Needle-like Aragonite from Limestone without Calcinations in the Presence of Magnesium Sulfate

  • Hu, Zeshan;Shao, Minghao;Cai, Qiang;Jiao, Zhaojie;Zhong, Chenhua;Deng, Yulin
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • Much attention has been paid to the processing of inorganic whisker, especially calcium carbonate whisker, which can be used as reinforcement materials of polymer composite due to its low price. Unfortunately, the present synthesis technique of calcium carbonate whisker starts from calcinations of limestone, which involves high energy consumption and furthermore is a highly environment polluting reaction. In this report, needle-like aragonite was synthesized with a reversible solution reaction from limestone without calcination. Optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used to characterize the morphology and crystal structure of intermediates as well as that of the product, aragonite. GCC (grinding calcium carbonate) powder was dissolved in an aqueous solution of magnesium sulfate with reflux and air flush. EDTA titration was used to evaluate reaction rate of the dissolution. A kinetics equation of the dissolution reaction was constructed, which displayed second-order kinetics with respect to the concentration of magnesium sulfate. A rate constant of $0.0015\;l^{-3}{\cdot}mol^{-1}{\cdot}h^{-1}$ was obtained. The dissolution reaction gave fiber-like magnesium hydroxide sulfate and gypsum crystal. Then needle-like aragonite with a length of $9.13\;{\pm}\;1.02\;{\mu}m$ and an aspect ratio of $5.64\;{\pm}\;1.37$ was synthesized from the dissolution product with $CO_2$ bubbling at $70^{\circ}C$.

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.

Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series

  • Kim, Young-Kyun;Lee, Ji-Young;Kim, Su-Gwan;Lim, Seung-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.167-171
    • /
    • 2013
  • PURPOSE. The purpose of this case series was to evaluate the effect of guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate. MATERIALS AND METHODS. Guided bone regeneration using Demineralized Allogenic Bone Matrix with Calcium Sulfate ($AlloMatrix^{TM}$, Wright. USA) was performed at the time of implant placement from February 2010 to April 2010. At the time of the second surgery, clinical evaluation of bone healing and histologic evaluation were performed. The study included 10 patients, and 23 implants were placed. The extent of bony defects around implants was determined by measuring the horizontal and vertical bone defects using a periodontal probe from the mesial, distal, buccal, and lingual sides and calculating the mean and standard deviation of these measurements. Wedge-shaped tissue samples were obtained from 3 patients and histologic examination was performed. RESULTS. In clinical evaluation, it was observed that horizontal bone defects were completely healed with new bones, and in the vertical bone defect area, 15.1% of the original defect area remained. In 3 patients, histological tests were performed, and 16.7-41.7% new bone formation was confirmed. Bone graft materials slowly underwent resorption over time. CONCLUSION. $AlloMatrix^{TM}$ is an allograft material that can be readily manipulated. It does not require the use of barrier membranes, and good bone regeneration can be achieved with time.

EFFECT OF COMPOSITE GRAFT OF CALCIUM CARBONATE AND CALCIUM SULFATE ON THE PERIODONTAL REGENERATION OF 3-WALL INTRABONY DEFECTS OF ADULT DOGS (성견의 3면 골내낭에 calcium carbonate와 calcium sulfate의 혼합이식이 치주조직 치유에 미치는 영향)

  • Choi, Mi-Ryung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.3
    • /
    • pp.633-648
    • /
    • 1994
  • Synthetic bone graft materials have been used for the regeneration of periodontal tissue lost due to periodontal disease, but the limitations of these materials had prompted the use of composite grafts. Among those, a composite graft of calcium carbonate(CC) and calcium sulfate(CS) is one of those materials that has not been studied extensively. CC, which is extracted from a natural coral, is known to possess osteoconductive property. SC can play an adjunctive role in the regeneration of bone tissue, and has shown good resorbability and biocompatibility. This study was conducted in order to investigate the effects of CC and CS composite graft to the regeneration of bone in the intrabony defects of dogs. 3-wall intrabony defects ub size of $4mm{\times}4mm{\times}4mm$ were created in the alveolar bone in the premolar areas. Then those defects that were treated with root planning only were designated as control, while the experimental group 1 and 2 each received the CC and CS composite grafts in the ratio of 8 : 2 and 5 : 5 the animals were sacrificed after 8weeks and the specimens were histologically analyzed. The results were as follows ; 1. No inflammation or foreign body reaction were observed in all subjects. CS has not been seen due to complete resorption, and resorption pattern of CC was observed. 2. Significant differences(p<0.05) in new cementum formation were observed between control($1.42{\pm}0.64mm$) and experimental groups(group 1 ; $2.53{\pm}0.94mm$, group 2 ; $2.23{\pm}0.96mm$) but the difference between the two experimental groups was not significant. 3. Significant differences(p<0.01) in new bone formation were observed between control($0.59{\pm}0.55mm$) and experimental groups(group 1 ; $2.27{\pm}0.61mm$, group 2 ; $2.05{\pm}0.56mm$) but the difference between the two experimental groups was not significant. 4. The extent of apical epithelial migration has shown no significant difference between control($1.18{\pm}1.24mm$) and experimental groups(group 1 ; $0.51{\pm}0.54mm$, group 2 ; $0.73{\pm}0.70mm$). 5. The extent of bone formation was generally limited to the extent of cementum formation for all groups, and significant correlation was found in the amount of bone formation and cementum formation in experimental group 1.(Co.=0.86, p<0.01) These results suggest that the composite graft of CC and CS is biocomplatible and effective in the new bone and new cementum formations. In the case of 3-wall intrabony defects of dogs, the composite ratio of 8 : 2 and 5 : 5 had shown no significant differences in the healing.

  • PDF

Studies on Uptake by Crops of Lead and Reduction of it's Damage -II. Effect of application of calcium and phosphate materials on Pb Solubility in Soil (농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -II. 석회(石灰)와 인산물질시용(燐酸物質施用)이 토양중(土壤中) 납(pb) 용출량(溶出量)에 미치는 영향(影響))

  • Kim, Kyu Sik;Kim, Bok Young;Han, Ki Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 1986
  • A column test was conducted to find out the effect of application of slaked lime, calcium sulfate, calcium superphosphate, and phosphoric acid on the solubility of lead in soil. The soil was adjusted to 310.8 ppm concentration of Pb and applied with amounts of calcium equivalent to 600, 1000, 2000 ppm as slaked lime; sulfate 144, 288, 432 ppm as calcium sulfate; phosphate 95, 190, 285 ppm as calcium superphosphate and phosphoric acid, respectively. The results obtained are as follows: 1. The increasing application of improvement agents reduced the amounts of water soluble Pb in soil. Phosphoric acid was the most effect among to the treatments. 2. The slaked lime treatment has the highest pH of soil and the lowest at the phosphoric acid one. The soil Eh has a reverse tendency the soil pH. 3. Water soluble Ca, $PO_4$ and $SO_4$ contents increased with increasing application amounts of improvement agents in soil. 4. $1N-NH_4$ OAC soluble Pb content in soil was a decreasing tendency in the order of calcium superphosphate, phosphoric acid, slaked lime, calcium sulfate and control after experiment.

  • PDF

Retention of sulfate and chloride ions in commercially available tubular membranes

  • Qadir, Danial;Mukhtar, Hilmi;Keong, Lau Kok
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.369-380
    • /
    • 2017
  • Performance evaluation of four commercially available tubular membranes (AFC 80, AFC 30, PU 608, ES 404) was accomplished in self-assembled membrane testing unit. Effects of varying transmembrane pressure, feed concentration and anion type were investigated. Aqueous solutions of salts such as calcium chloride, calcium sulfate, tin chloride and tin sulfate were prepared for this study. It was noted that the investigated parameters e.g., pressure and concentration had significant effects on membrane's performance. Nevertheless, anion type effectively played its role in the rejection of salts since salt having SO4-2 anions had a better rejection than the salts containing Cl-1. It is observed that rejection was dominated by Donnon exclusion for strongly charged nanofiltration membranes whereas for weakly charged ultrafiltration membranes, size exclusion was the key mechanism to reject the ions.