• Title/Summary/Keyword: calcium carbonate content

Search Result 134, Processing Time 0.033 seconds

Use of Calcium Carbonate for Improving Solid Content of KOCC Wet Web (탄산칼슘 적용에 의한 KOCC 지필의 고형분 증대)

  • Hwang, In-Young;Ji, Sung-Gil;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • For the manufacture of linerboard with 100% KOCC, we tried to increase the solid content of wet web by employing GCC (grounded calcium carbonate) in the fiber furnish to save drying energy. Three different diameters of GCC, namely, 5, 10, and $35{\mu}m$, were used. To complement the strength loss by the addition of GCC, cationic starch and refining treatment were tried. It was found that the addition of $10-35{\mu}m$ dia. GCC to KOCC for $180g/m^2$ basis weight sheets increased the solid content of the furnish about 1-1.5% with better bulk and drainage properties. The loss of strength properties were compensated by the application of cationic starch and/or refining process to the KOCC furnish. The dia. of GCC of $35{\mu}m$ was, however, too large to make smooth surface of the sample sheet. So, the optimization process was required before implementing the results to the mill by selecting proper diameter and shape of the calcium carbonate.

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

Effects of Ground Calcium Carbonate Dispersion by Sodium Polyacrylate (폴리아크릴산 소다에 의한 중질 탄산칼슘의 분산효과)

  • Ro, Yoon-Chan;Jeong, Tae-Young;Cho, Kyoung-Haeng;Roh, Seung-Ho;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 1993
  • Ground Calcium Carbonate, among paper coating pigments, will influence less dispersant demand, less binder demand, increase coating solids from 58% to 70%, which means high speed coating, less shrinkage during drying, less energy consumption, more uniform coverage of fibers. The quality point of view of Ground Calcium Carbonate, brightness, particle size, Particle size distribution, hardness, impurities content are important. More important factors of Ground Calcium Carbonate which influence the paper coating process are dispersion mechanisms and their effects. The study was made to investigate the effect of Ground Calcium Carbonate dispersion by sodium salt of polyacrylate dispersant composition and dispersion condition. Basic tests such as physical, optical and chemical were perfumed, and dispersion effects were investigated by different conditions. The results showed that the type of dispersant affected the dispersion effects, and the Ground Calcium Carbonate has critical dispersant demand.

Comparison of the Bioavailability of Calcium from Anchovy, Tofu and Nonfat Dry Milk(NFDM) in Growing Male Rats (칼슘공급원으로서 건멸치, 두부, 탈지분유의 체내이용성 연구)

  • 이성현
    • Journal of Nutrition and Health
    • /
    • v.27 no.5
    • /
    • pp.473-482
    • /
    • 1994
  • This study was to compare the bioavailability of calcium from anchovy and tofu to those of calcium from calcium carbonate(CaCO3)as the control diet and non-fat dry milk(NFDM). Rats weighing 50-60g were placed on experimental diets and deionized water at free access for 4 weeks. Diets contained 0.2% calcium from calcium-carbonate, NFDM, anchovy, tofu or 0.5% calcium as obtained were as follows : 1) No significant differences in the apparent absorption of calcium(62.5%-71.0%) were observed in the rats fed four different calcium sources at the level of 0.2% while 0.5% calcium diet group apparently absorbed calcium less efficiently(52.2%). 2) Bone length of tibia and femur was not significantly different among the groups, though 0.5% calcium of control group showed slightly longer length. 3) Tibia fat-free dry weights of 0.2% calcium of NFDM and anchovy diet groups were not significantly different from that of 0.5% calcium of control group. For femurs NFDM, anchovy and tofu groups were similar in their fat-free dry weight to that of 0.5% calcium group. 4) For calcium contents tibia contents tibia from anchovy treated group showed higher value than calcium-carbonate and tofu groups and the value was not significantly different from that of 0.5% calcium group. In femur NFDM, tofu and calcium-carbonate groups were not significantly different in their calcium content but 0.5% calcium group had higher level of calcium than 0.2% calcium groups. 5) The normalized values(NV) show that there was no significant differences in NV among 0.2% CaCO3 anchovy and tofu groups, while NV of NFDM group was significantly lower than that of calcium-carbonate group. NV of 0.5% calcium group was a little more than 50% of those in 0.2% calcium groups. Though the values obtained for the calcium bioavailability were somewhat variable among experimental products, it was demonstrated that anchovy and tofu are as good as NFDM for the dietary calcium provider when calcium intake is at marginal level.

  • PDF

The Effect of Various Types of Calcium Sources on Calcium and Bone Metabolism in Rats (칼슘 급원의 종류가 흰쥐의 체내 칼슘 및 골격대사에 미치는 영향)

  • 정혜경
    • Journal of Nutrition and Health
    • /
    • v.29 no.5
    • /
    • pp.480-488
    • /
    • 1996
  • This study was performed to investigate the effect of various types of calcium sources on calcium and bone metabolism. Sprague-Dawley male rats weighing approximately 89.3g were divided into 4 groups and fed experimental diets containing 0.5% calcium for 5 weeks. Four different calcium salts were used for the study : calcium phosphate, calcium lactate, calcium gluconate, and calcium carbonate. Food intake showed no significant difference n accordance with the type of calcium salt, but bo요 weight gain and food efficiency were lower in calcium gluconate and calcium carbonate groups. There was significant differences in liver, thymus and epididymal fat pad weight with the of calcium salt ; the calcium gluconate group showed lower values compared to the other groups. Femur and scapular length were higher in calcium lactate and calcium carbonate groups. Wet weight, dry weight, and density of the femur tended to be lower in the calcium gluconate group than the other groups, but this difference was not statistically significant. The calcium content of the other groups. The calcium gluconate group showed higher urinary calcium and lower calcium absorption and balance. In conclusion, calcium and bone metabolism were different according to the type of calcium sources consumed.

  • PDF

Stability of Pre-treated Fillers for High Loaded Printing Paper (고충전 인쇄용지 제조를 위한 중질 탄산칼슘 전처리 기술의 안정성에 관한 연구)

  • Seo, Yung Bum;Choi, Jin Sung;Ji, Sung Gil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • More addition of calcium carbonate in printing paper allows savings of the wood fibers and the drying energy. Pre-flocculation of GCC (ground calcium carbonate) using functional polymers was known as the best available technology to make high loaded paper until now, and it allowed less reduction of the paper essential properties such as tensile strength and smoothness at higher GCC content. However, pre-flocculated GCC became unstable in size under the continued agitation in the mill. Therefore, pre-flocculation method was modified in such a way that the in-situ calcium carbonate was formed between the GCC particles of the pre-flocculated GCC, and the resultant became more stable in size, which we named as HCC (hybrid calcium carbonate). HCC turned out to make high tensile strength and smoothness as much as the pre-flocculated GCC and gave much better size stability against stirring. Furthermore, HCC gave high bulk that pre-flocculation could not make.

Effect of chemical concentrations on strength and crystal size of biocemented sand

  • Choi, Sun-Gyu;Chu, Jian;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.465-473
    • /
    • 2019
  • Biocementation due to the microbially induced calcium carbonate precipitation (MICP) process is a potential technique that can be used for soil improvement. However, the effect of biocementation may be affected by many factors, including nutrient concentration, bacterial strains, injection strategy, temperature, pH, and soil type. This study investigates mainly the effect of chemical concentration on the formation of calcium carbonate (e.g., quantity, size, and crystalline structure) and unconfined compressive strength (UCS) using different treatment time and chemical concentration in the biotreatment. Two chemical concentrations (0.5 and 1.0 M) and three different treatment times (2, 4, and 8 cycles) were studied. The effect of chemical concentrations on the treatment was also examined by making the total amount of chemicals injected to be the same, but using different times of treatment and chemical concentrations (8 cycles for 0.50 M and 4 cycles for 1.00 M). The UCS and CCC were measured and scanning electron microscopy (SEM) analysis was carried out. The SEM images revealed that the sizes of calcium carbonate crystals increased with an increase in chemical concentrations. The UCS values resulting from the treatments using low concentration were slightly greater than those from the treatments using high concentration, given the CCC to be more or less the same. This trend can be attributed to the size of the precipitated crystals, in which the cementation efficiency increases as the crystal size decreases, for a given CCC. Furthermore, in the high concentration treatment, two mineral types of calcium carbonate were precipitated, namely, calcite and amorphous calcium carbonate (ACC). As the crystal shape and morphology of ACC differ from those of calcite, the bonding provided by ACC can be weaker than that provided by calcite. As a result, the conditions of calcium carbonate were affected by test key factors and eventually, contributed to the UCS values.

Effect of Vinegar on the Solubility of Calcium (칼슘 용해도에 미치는 식포의 영향)

  • Jang, Se-Young;Baek, Chang-Ho;Jeong, Kyou-Ho;Park, Nan-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.112-116
    • /
    • 2005
  • This study was performed to investigate the effect of vinegar on the solubility of 3 types of calcium. After solubilized, total acidity and calcium content were increased as initial acid and calcium concentration increased. Addition of vinegar resulted in pH decrement while total acidity increment. Calcium content in seaweed calcium and calcium carbonate were higher than that in nano calcium. Saturated concentration of seaweed calcium and calcium carbonate were $7.0\%$ (w/v) and $6.0\%$ (w/v), respectively, in vinegar and calcium content were $2,234\;mg\%$ and $2,490\;mg\%$, respectively.

Strength and Heat Deflection Temperature of Resin Compounds Prepared Using Different Size and Content of Ground Calcium Carbonate (중질 탄산칼슘의 입자 크기와 첨가량 변화에 따라 제조된 수지 조성물의 강도 및 열변형온도)

  • Lee, Yoonjoo;Heo, Seck;Kim, Younghee;Kim, Soo-Ryong;Kwon, Woo-Teck
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.359-362
    • /
    • 2016
  • Mineral filler is used for resin compounds, because it increases the stiffness and thermal stability of a resin compound, and it also cuts down the cost. Calcium carbonate, silica, magnesium oxide, and others are used as filler materials in general, and the type of filler material, the size, and content can affect the physical properties of compounds. Those factors also influence the viscosity of resin mixtures and the workability, and should be adjusted by changing the contents of the filler, which depends on the size. In this study, five kinds of ground calcium carbonate, which were different in size, were used to produce polyester compounds ; the physical properties were compared with the filler size and contents. The mechanical properties were measured by bending strength and tensile strength, and the heat deflection temperature was obtained for thermal stability.

Production of Vaterite Type Calcium Carbonate by using Oyster Shell Waste with Lysine (라이신 첨가에 의한 폐 굴껍질 이용 vaterite형 탄산칼슘 제조)

  • Bak, Young-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.118-126
    • /
    • 2021
  • The experiments to produce the vaterite type calcium carbonate were conducted for using the waste oyster shell as the recycling resources. Firstly, the oyster shell were calcinated at 800 ℃ for 24 h. Calcinated oyster shell were reacted with the nitric acid solution, and were diluted to 0.1 M Ca(NO3)2 solution. This solution was mixed with 0.1 M Na2CO3 contained 0.1 mol lysine/1 mol CaO at 20 ℃ and 600 rpm mixing condition for 1 h. The reaction products were identified to vaterite type calcium carbonate (84.5% vaterite, 15.5% calcite) by XRD and SEM analysis. Mean particle diameter was 6.87 ㎛, and the lysine content in calcium carbonate was analyzed to 0.1%.