• Title/Summary/Keyword: calcium binding protein

Search Result 191, Processing Time 0.028 seconds

Differentially expressed serum proteins associated with calcium regulation and hypocalcemia in dairy cows

  • Shu, Shi;Bai, Yunlong;Wang, Gang;Xiao, Xinhuan;Fan, Ziling;Zhang, Jiang;Zhao, Chang;Zhao, Yang;Xia, Cheng;Zhang, Hongyou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.893-901
    • /
    • 2017
  • Objective: Hypocalcemia is an important metabolic disease of dairy cows during the transition period, although the effect of hypocalcemia on biological function in dairy cows remains unknown. Methods: In this study, proteomic, mass spectrum, bioinformatics and western blotting were employed to identify differentially expressed proteins related to serum Ca concentration. Serum samples from dairy cows were collected at three time points: 3rd days before calving (day -3), the day of calving (day 0), and 3rd days after calving (day +3). According to the Ca concentration on day 0, a total of 27 dairy cows were assigned to one of three groups (clinical, subclinical, and healthy). Samples collected on day -3 were used for discovery of differentially expressed proteins, which were separated and identified via proteomic analysis and mass spectrometry. Bioinformatics analysis was performed to determine the function of the identified proteins (gene ontology and pathway analysis). The differentially expressed proteins were verified by western blot analysis. Results: There were 57 differential spots separated and eight different proteins were identified. Vitamin D-binding protein precursor (group-specific component, GC), alpha-2-macroglobulin (A2M) protein, and apolipoprotein A-IV were related to hypocalcemia by bioinformatics analysis. Due to its specific expression (up-regulated in clinical hypocalcemia and down-regulated in subclinical hypocalcemia), A2M was selected for validation. The results were consistent with those of proteomic analysis. Conclusion: A2M was as an early detection index for distinguishing clinical and subclinical hypocalcemia. The possible pathogenesis of clinical hypocalcemia caused by GC and apolipoprotein A-IV was speculated. The down-regulated expression of GC was a probable cause of the decrease in calcium concentration.

Alterations of Calcium-binding Protein Immunoreactivities in the Hippocampus Following Traumatic Brain Injury (외상성 뇌손상 후 해마내 칼슘결합단백질 면역반응의 변화)

  • Oh, Yun-Jung;Kim, Baek-Seon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.235-248
    • /
    • 2011
  • Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adults and is a major risk factor for the development of posttraumatic epilepsy (PTE). Recent studies have provided significant insight into the pathophysiological mechanisms underlying the development of epilepsy. Although the link between brain trauma and epilepsy is well recognized, the complex biological mechanisms that result in PTE following TBI have not been fully elucidated. Therefore, this study investigated in order to identify whether or not the abnormal expression of calcium-binding proteins in the lesioned hippocampus plays a role in neuronal damage by brain trauma and whether or not the expressions may change in the contralateral hippocampus during the adaptive stage as early time point following TBI. During early time point following TBI, both parvalbumin (PV) and calbindin D-28k (CB) immunoreactivities were decreased with in the lesioned hippocampus. However, these expressions were recovered to control levels as depend on time courses. On the other hand, PV immunoreactivity in contralateral hippocampus was transiently reduced as compared to the control levels, whereas CB expression was unchanged. These findings indicate that the alterations of the calcium-binding proteins, especially PV and CB, may contribute to the neuronal death and/or damage induced by abnormal inhibitory neurotransmission at early time period following brain trauma and the development of epileptogenesis in patients with traumatic brain injury.

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong;Nguyen, Huong Thi;Yong, Hyo Jeong;Reyes-Alcaraz, Arfaxad;Lee, Yoo-Na;Park, Hee-Kyung;Na, Yun Hee;Lee, Cheol Soon;Ham, Byung-Joo;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.909-920
    • /
    • 2020
  • Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.

Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling

  • Ahn, Mi Young;Kim, Ban Ji;Yoon, Hyung Joo;Hwang, Jae Sam;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee (Bombus ignitus) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

A Comparison between Food and Nutrition Major, and Non-major, Female University Students in terms of their Nutrient Intakes and Hematological Status, with an Emphasis on Serum Iron (식품영양 전공 및 비전공 여대생 영양섭취상태 및 혈액성상에 관한 비교 연구 - 혈청 철분을 중심으로 -)

  • 정선희;장경자
    • Journal of Nutrition and Health
    • /
    • v.35 no.9
    • /
    • pp.952-961
    • /
    • 2002
  • The purpose of this study was to compare nutrient intakes and the serum iron status of 74 Food and Nutrition major, and 45 non-major, female students at a university in Incheon. This cross-sectional survey was conducted using a self-administered questionnaire and the data were analyzed by the SPSS 10.0 program. The nutrient intake data collected from three-day dietary recalls were analyzed by the Computer Aided Nutritional Analysis Program. Anthropometric data and hematological indices of iron in the blood were measured. Average heights, weights, body fat and mid-upper arm circumference of Food and Nutrition major and non-major female students were 160.3 cm, 53.5kg, 25.8%, 23.7cm and 159.8cm, 55.5kg, 28.9%, 24.8cm, respectively. There were significant differences in body fat percentage and mid-upper arm circumference between the major and non-major students. In all subjects, daily dietary intakes of nutrients- except protein, vitarrlin B1, vitamin C and phosphorus - were lower than the Korean RDA. In particular, calcium and iron intakes of all subjects were under 60% of the Korean RDA. Values of RBC (red blood cell) count, Hb (hemoglobin), Hct (hematocrit), MCV (mean cell volume), MCH (mean cell hemoglobin), and MCHC (mean corpuscular hemoglobin concentration) of the non-major students were significantly higher compared to those of the major students. The diastolic blood pressure of the major students was negatively correlated with MCV, MCH, TS, and serum iron levels. Triceps skinfold thickness, mid-upper arm circumference and waist-to-hip ratios of the non-major students were negatively correlated with TIBC. Fat intake was positively correlated with RBC, Hb, Hct, and TIBC (total iron binding capacity) in the major students. Vitamin C intake was positively correlated with serum iron in the major students. Carbohydrate intake was positively correlated with Hb, Hct, and MCHC in the non-major students. Niacin and iron intakes were positively correlated with Hb and Hct in the non-major students. Therefore, nutrition education is necessary for female university students to improve nutritional status and to practice optimal nutrition strategies. (Korean J Nutrition 35(9) : 952~961, 2002)

Iron and vitamin D status in breastfed infants and their mothers

  • Kang, Yu Sun;Kim, Joon Hwan;Ahn, Eun Hee;Yoo, Eun-Gyong;Kim, Moon Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.283-287
    • /
    • 2015
  • Purpose: We assessed the relationships between iron and vitamin D statuses in breastfed infants and their mothers and evaluated the determinants of iron and vitamin D deficiencies in breastfed infants. Methods: Seventy breastfed infants aged 4-24 months and their mothers participated in this study from February 2012 to May 2013. Complete blood counts, total iron binding capacity, and levels of C-reactive protein, iron, ferritin, calcium, phosphate, alkaline phosphatase, and 25-hydroxyvitamin D (25(OH)D) in infants and their mothers were measured. Results: A history of maternal prepregnancy anemia was associated with lower ferritin and 25(OH)D levels in both infants and their mothers. The 25(OH)D level of infants correlated with maternal 25(OH) D levels. The independent risk factors for iron deficiency in breastfed infants were the duration of breastfeeding (odds ratio [OR], 6.54; 95% confidence interval [CI], 1.09-39.2; P=0.04) and infant body weight (OR, 2.65; 95% CI, 1.07-6.56; P=0.04). The determinants for vitamin D deficiency were the infant's age (OR, 0.15; 95% CI, 0.02-0.97; P=0.046) and maternal 25(OH)D level (OR, 0.74; 95% CI, 0.59-0.92; P=0.01). Conclusion: A maternal history of prepregnancy anemia requiring iron therapy was associated with lower current ferritin and 25(OH)D levels in both infants and their mothers. Therefore, physicians should monitor not only iron but also vitamin D levels in infants who are breastfed by mothers who had prepregnancy anemia.

The Effect of Minocycline on Motor Neuron Recovery and Neuropathic Pain in a Rat Model of Spinal Cord Injury

  • Cho, Dong-Charn;Cheong, Jin-Hwan;Yang, Moon-Sul;Hwang, Se-Jin;Kim, Jae-Min;Kim, Choong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • Objective : Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury. Methods : To simulate spinal cord injury, the rats' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test Mechanical hyperalgesia was measured throughout the 28-day post -operative course via the von Frey test Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (lba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5). Results : In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of lba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of lba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline. Conclusion : By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.

Effects of Kaempferol on Lippolysaccharide-induced Inflammation in Mouse Brain (Kaempferol이 LPS로 유도된 생쥐 중추신경계 염증에 미치는 영향)

  • Lee, Hung-Gi;Kim, Do-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • Objectives : Brain inflammation early activates the microglia and activated microglia secrete a variety of pro-inflammatory cytokines. Kaempferol, which is a flavonoid in Cuscutae Semen, shows a wide range of physiological activities, including neurons protection and anti-inflammatory actions through inhibition of pro-inflammatory mediators. The present study examined the modulatory effect of kaempferol on cytokines [tumor necrosis factor- alpha ($TNF-{\alpha}$), interleukin-1beta ($IL-1{\beta}$) and interleukin-6 (IL-6)] and cyclooxygenase-2 (COX-2) mRNA expression and microglia activation in the brain tissue of the mouse. Methods : Kaempferol was administered orally three doses of 10, 20 and 30 mg/kg respectively, once 1 hour before the lippolysaccharide(LPS) (3 mg/kg, i.p.) injection. Brain tissue was removed at 4 hours after LPS injection. Cytokines and COX-2 mRNA expression in the brain tissue was measured by the quantitative real-time polymerase chain reaction (PCR) method. Iba1 expression was calculated by western blotting method. Microglia was observed with immunohistochemistry. Immunohistochemistry stained microglia was analyzed by using ImageJ software. Results : Kaempferol 20 and 30 mg/kg was significantly attenuated the expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA. Kaempfrol 10, 20 and 30 mg/kg significantly attenuated COX-2 mRNA expression in the brain tissue. Kaempferol 30 mg/kg significantly suppressed the increase of Iba1 protein expression by LPS. Kaempferol 30 mg/kg significantly decreased the number of microglia in the cerebral cortex and the number and cell size of microglia in the hypothalamic region and the area percentage of ionized calcium binding adaptor molecule 1(Iba1)-expressed microglia in the hippocampus. Conclusions : This results indicate that kaempferol plays an anti-inflammatory role in the brain.

Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2

  • Kang, June Hee;Kim, Hyun Ji;Park, Mi Kyung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.625-633
    • /
    • 2017
  • Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and $Ca^{2+}$ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.

Osteoprotective Effect of Extract from Cirsium japonicum var. ussuriense in Ovariectomized Rats (난소절제 흰쥐에서 엉겅퀴 추출물의 골다공증 보호 효과)

  • Kim, Young Ock;Kim, Jin Seong;Lee, Sang Won;Jo, Ick Hyun;Na, Sae Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This study was carried out to investigate the effects of the Cirsium japonicum var. ussuriense (C. japonicum) extract on serum level of hormones from induced osteoporosis by ovariectomized rats. Two month-old rats were ovariectomized (OVX), remained untreated for 8 weeks, and were subsequently administered C. japonicum (200 mg/kg) every day for 8 weeks. We examined the effects of treated C. japonicum on ovariectomy-related changes in Insulin-like Growth Factors (IGF), Insulin-like Growth Factor binding protein-3 (IGBF-3), Estrogen, Calcium, and Phosporus. After 8 weeks, the serum levels of IGF-I, -II, and IGFBP-3 were higher presented as compared to the other two groups (P < 0.05), in the C. japonicum extract treatment on OVX rats. There were differences between OVX and C. japonicum extract treated OVX rats in serum levels of $Ca^{2+}$, but $Ca^{2+}$ levels for the normal group was higher than for the other two groups. The C. japonicum extract increased both serum IGFs and IGFBP-3 levels on induced osteoporotic rat by ovariectomized. Thus, these results revealed that the C. japonicum extract is a possible role for improvement of osteoporosis induced-ovariectomized rats and has a great potential as an alternative tool for the treatment of osteoporosis.