• Title/Summary/Keyword: calcium amount

Search Result 879, Processing Time 0.034 seconds

Preparation of Calcium-fortified Soymilk and in Vitro Digestion Properties of Its Protein and Calcium (칼슘강화 두유의 제조 및 단백질과 칼슘의 체외 소화특성)

  • Pyun, Jin-Won;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.995-1000
    • /
    • 1996
  • The present study was attempted to preprare calcium-fortified soymilk using proteases to improve calcium intolerance of soymilk protein and to evaluate its nutritional properties. The protease from Bacillus polymyxa was chosen as an enzyme source because it produced the least bitter taste and calcium-aggregation of soymilk among various enzymes. The optimum treatment time was 10 minutes at $50^{\circ}C$ for the best result. In vitro protein digestibility of calcium-fortified soymilks was comparable with that of control soymilk. Calcium in the digested soymilks was mostly in the ionic form and the amount of ionic calcium increased in accordance with the amount of fortified calcium in soymilk. This suggests that fortified calcium in the soymilk is bioavailable.

  • PDF

The Physiological Changes in the Olive Flounder Paralichthys olivaceus Caused by a Diet Containing CaO (CaO (oxide calcium)가 첨가된 사료 공급이 넙치(Paralichthys olivaceus)에 미치는 생리적 변화에 대한 연구)

  • Moon, Hye-Na;Namgung, Jin;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.567-576
    • /
    • 2014
  • This study investigated the physiological effects of a diet containing calcium oxide (CaO) on the olive flounder, Paralichthys olivaceus. The results indicate that the amount of calcium in the blood was higher in the calcium group compared with the controls. The aspartate amino transferase (AST) and alanine amino transferase (ALT) levels were lower in the calcium group, while lysozyme activity was higher in the calcium group. Histologically, fish in the calcium group had more hepatocytes in the liver and more intact scales. In addition, an attack experiment using Vibrio anguillarum (KCTC-2711) and Edwardsiella tarda (KCTC-3657) showed that the survival was higher in the calcium group compared with the controls. These results suggest that feeding fish CaO when they require it, such as during periods of gonadal maturation and rapid growth, will increase their immunity and resistance to pathogens.

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.

Applicability of biocementation for organic soil and its effect on permeability

  • Sidik, Waleed S.;Canakci, Hanifi;Kilic, Ibrahim H.;Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.649-663
    • /
    • 2014
  • In past few years, the use of bacterial calcium carbonate precipitation (biocementation) has become popular as a ground improvement technique for sandy soil. However, this technique was not applied to organic soil. This study focused on bacterial calcium carbonate precipitation and its effect on permeability in organic soil. A special injection system was prepared for inducing bacterial solution to the samples. The bacterial solution supplied to the samples by gravity for 4 days in specific molds designed for this work. Calcite precipitation was observed by monitoring pH value and measuring amount of calcium carbonate. Change in the permeability was measured before and after biocementation. The test results showed that the pH values indicates that the treatment medium is appropriate for calcite precipitation, and amount of precipitated calcium carbonate in organic soil increased about 20% from untreated one. It was also found that the biocementation can be considered as an effective method for reducing permeability of organic soil. The results were supported by Scanning electron microscopy (SEM) analysis and energy-dispersive x-ray (EDX) analysis.

Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

  • Cho, Min Guk;Bae, Su Min;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.571-578
    • /
    • 2017
  • This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE $L^*$ values decreased as the amount of added egg shell calcium powder increased. CIE $a^*$ values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

A Study on the High Temperature Properties of Self-hardening Sand Mold (High Temperature Properties of Self-Hardening Sand Mold using Calcium-Orthosilicate Powder) [I] (자경성 주형의 고온성질에 관한 연구 Calcium-Orthosilicate를 이용한 자경성 주형의 고온성질에 관하여 [I])

  • 강인찬;한윤희;문인탁
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.20-24
    • /
    • 1976
  • These are many kinds of self-hardening methods for sand mold using sodium silicate. When sodium silicate solution is mixed with calcium-orthosilicate powder hardening reaction occurs, which is based for self-hardening method at high temperature. The high temperature strength and resicual strength of mold are related to the mole ratio of sodium silicate and the contents of calcium-orthosilicate powder. The results obtained in this study were as follows: 1) The high temperature strength of mold was maximum at about $600^{\circ}C$, and at higher temperature showed lower value on the contrary. 2) The high temperature strength of mold was increased by increasing the amount of sodium silicate having lower mole ratio and high concentration. 3) The residual strength of mold was reduced by increasing the mole ratio of sodium silicate and increasing the concentration of calcium-orthosilicate.

  • PDF

Hydration modeling of high calcium fly ash blended concrere (고칼슘 플라이애시 혼입한 콘크리트의 수화반응 모델에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.48-49
    • /
    • 2015
  • High-calcium fly ash (FH) is widely used as mineral admixtures in concrete industry. In this paper, a hydration model is proposed to describe the hydration of high-calcium fly ash blended-cement. This model takes into account the hydration reaction of cement, the chemical reaction of fly ash, and reaction of free CaO in fly ash. Using the proposed model, the development of compressive strength of FH blended concrete is predicted using the amount of calcium silicate hydrate (CSH). The agreement between simulation and experimental results proves that the new model is quite effective.

  • PDF

The Performance Evaluation of Mortar Using Calcium Nitrite and CO2 Nano-Bubble Water (아질산칼슘과 탄산나노버블수를 사용한 모르타르의 성능 평가)

  • Kim, Ho-jin;Kim, Jin-Sung;Choi, Hyeong-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.145-146
    • /
    • 2020
  • This study investigated the performance evaluation of polymer cement mortar for repairing concrete structures using calcium nitrite(Ca(NO2)2) and CO2 nano-bubble mixing water to develop section-restoration methods for the repair and reinforcement of cracks. The evaluation items were strength and microstructure analysis at 28 days of age according to the change in the amount of calcium nitrite and the use of CO2 nano-bubble water. As a result of the experiment, it was confirmed that the performance of polymer cement mortar for repairing concrete structures was improved by the generation of nitrite-based hydration products when calcium nitrite and CO2 nano-bubble water were used.

  • PDF

Mechanical Properties of Concrete using Alpha-Calcium Sulfate Hemihydrate (알파형 반수석고를 활용한 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Lim, Byung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.72-79
    • /
    • 2019
  • Concrete is vulnerable to cracks due to volume changes caused by temperature changes, shrinkage during curing, external forces, or poor construction. In particular, concrete placed in electric power tunnel structures can generate cracks by a variety of factors. As a result, these tunnel structures require continuous maintenance. In this study, we investigated the mechanical properties of electric power tunnel concrete using alpha-calcium sulfate hemihydrate, which is an industrial byproduct that has excellent expansion performance. To compensate for the decrease in compressive strength when substituting alpha-calcium sulfate hemihydrate, based on previous research, we added 9% alpha-calcium sulfate hemihydrate and adjusted the amount of admixture while using the same amount of cement. We then evaluated the mechanical properties of the concrete. The results showed that the compressive strength of the concrete was higher than that of ordinary Portland cement (OPC), and the shrinkage of concrete was reduced by more than 30% compared to that of OPC. Therefore, adding 9% of alpha-calcium sulfate hemihydrate is expected to have a significant effect in reducing concrete cracks.

Daily Water Consumption and its Contribution to Calcium Intake in Korean Adults (한국 일부 성인의 수분 섭취와 수분을 통한 칼슘 섭취량 평가)

  • Park, Eun-Sun;Lee, Yeon-Kyung;Kim, Mi-Hyun;Choi, Mi-Kyeong
    • Korean Journal of Community Nutrition
    • /
    • v.24 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • Objectives: Although water is essential for life and can supply essential minerals, studies that evaluate calcium intake through drinking water are limited. The aim of this study was to assess calcium contents of natural mineral water (NMW) and its possible contribution to calcium intake in healthy adults. Methods: This study examined water consumption in 640 Korean adults with self-selected diet, analyzed the calcium content of 10 different brands of bottled NMWs sold in Korea, and assessed the amount of calcium intake from drinking water and its daily contribution to the recommended nutrient intake (RNI) of calcium. Results: Mean calcium content in 10 bottled NMWs was 20.9 mg/l. Daily water intakes from food composition database and calculated using energy intake based on 0.53 ml/kcal were 957.2 ml and 1109.8 ml for men and 848.3 ml and 951.6 ml for women, respectively, with a significant difference by gender (p<0.001). Daily drinking water intake was significantly higher among men than women (1203.9 ml vs. 1004.3 ml, respectively, p<0.001). Daily calcium intakes from foods were 564.0 mg for men and 534.2 mg for women. Daily possible calcium intakes from drinking bottled water were 25.2 mg for men and 21.0 mg for women (p<0.001). The contribution of daily calcium intake from drinking bottled water to RNI of calcium was 3.3% for men and 2.9% for women without significant difference. Conclusions: One half of the daily total water intake was consumed as drinking water, and possible calcium intake through drinking water was about 3% of RNI.