• Title/Summary/Keyword: calcium aluminate

Search Result 101, Processing Time 0.024 seconds

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations

  • Korucu, H.;Gulkan, P.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.595-616
    • /
    • 2011
  • Impact experiments have been carried out on concrete slabs. The first group was traditionally manufactured, densely reinforced concrete targets, and the next were ordinary Portland and calcium aluminate cement based HPSFRC (High performance steel fiber reinforced concrete) and SIFCON (Slurry infiltrated concrete) targets. All specimens were hit by anti-armor tungsten projectiles at a muzzle velocity of over 4 Mach causing destructive perforation. In Part I of this article, production and experimental procedures are described. The first group of specimens were ordinary CEM I 42.5 R cement based targets including only dense reinforcement. In the second and third groups, specimens were produced using CEM I 42.5 R cement and Calcium Aluminate Cement (CAC40) with ordinary reinforcement and steel fibers 2 percent in volume. In the fourth group, SIFCON specimens including 12 percent of steel fibers without reinforcement were tested. A high-speed camera was used to capture impact and residual velocities of the projectile. Sample tests were performed to obtain mechanical properties of the materials. In the companion Part II of this study, numerical investigations and simulations performed will be presented. Few studies exist that examine high-velocity impact effects on CAC40 based HPSFRC targets, so this investigation gives an insight for comparison of their behavior with Portland cement based and SIFCON specimens.

An Application of Shrinkage Compensation Mortar in Construction Field (수축 보상 모르타르의 현장 적용 연구)

  • 김기동;정성철;송명신;이경희
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.3-10
    • /
    • 2000
  • In this study, we compared a plain mortar with the CAS-system shrinkage compensation mortar for Ondol that is Korean traditional heating system. The Ondol mortar is necessary to have properties as non-crack, fine flatness and stability for thermal changes. especially, mortar'crack prevention is to be most important property in Ondol mortar. To develope the stable material on the crack-prevention, we used to calcium-sulfo-aluminate(CSA)system in shrinkage compensation mortar. And so, we confirmed the effects of calcium-sulfo-aluminate(CSA) system for mortar's physical properties such as setting time, compressive strength and expansion ratio for crack prevention. The initial and final setting time of the CSA mortar is faster than plain mortar about 2hours. And, Compressive strength increased about 20% that plain mortar. The crack length per unit area, plain mortar is 0.426∼0.481m/m2. The Results of apartment construction field test, the shrinkage compensation mortar is excellent about the crack-reduce effect.

Calcium Sulfo Aluminate (CSA) Cement from Coal Ash Utilized as Barriers for Radioactive Waste Disposal

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, we reviewed briefly about the barrier materials for the radioactive waste disposal. The primary concept of the radioactive waste disposal is safety. The goal of the radioactive waste management is to assure that the environment is not adversely affected and also public. There are a wide variety of materials are available for the radioactive waste disposal or storage. Among those coal fly ash is one of the significant materials are used as a barrier material. Here we reported, the Calcium sulfo aluminate (CSA) from coal fly ash is effectively suitable for the radioactive waste disposal. This is one of the ways of utilization of waste and manufactured the valuable materials for future indeeds.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation

  • Gulkan, P.;Korucu, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.617-636
    • /
    • 2011
  • We present the numerical implementation, simulation, and validation of the high-velocity impact experiments that have been described in the companion article. In this part, numerical investigations and simulations performed to mimic the tests are presented. The experiments were analyzed by the explicit integration-based software ABAQUS for improved simulations. Targets were modeled with a damaged plasticity model for concrete. Computational results of residual velocity and crater dimensions yielded acceptable results.

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

Characteristics and Structural Evolution of Low-Silica Calcium Aluminate Glasses (소량의 $SiO_2$가 첨가된 Calcium Aluminate 유리의 특성 및 구조)

  • Shim, Sung-Han;Heo, Jong;Kim, You-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.695-702
    • /
    • 1994
  • Current study was undertaken to explain the structural evolution and corresponding changes in the properties of calcium aluminate glasses with the variation of SiO2 doping concentration. Calcium aluminate glasses in the compositional ranges of (100-x)(0.6CaO+0.4Al2O3)+xSiO2(where x=0~60) were fabricated. DTA analysis confirmed an anomalous behavior in glass transition temperature (Tg) with the maximum of 887$^{\circ}C$ and minimum of 859$^{\circ}C$ when x=5 and 50, respectively. densities and refractive indices monotonically decreased with increasing SiO2 content and IR transmitting cutoff shifted to shorter wavelength side when the amount of added SiO2 exceeded 5 mole%. IR fundamental vibration absorption peaks showed the change that NBOs were inclined to SiO4 tetrahedron in the low-silica region and NBO per SiO4 tetrahedra changed from 2 to 0 with increasing silica content. Based on the analysis of IR fundamental vibration absorption peaks, the model of the structural change can be proposed in three step: 1) SiO4 scavenged the NBOs located at AlO4-tetrahedra, which resulted in the increased of Tg values, 2) NBOs located in the main network again with a decrease in Tg, and 3) dominated by the decrease in the relative amount of NBOs in the glass system, where Tg re-increased.

  • PDF

The Effect of Blaine and SO3 Contents of OPC on Shotcrete Binder with Calcium Aluminate Accelerator (OPC의 분말도 및 SO3 함량이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, Bong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.78-85
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of OPC fineness and SO3 content on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized OPC as a binder for shotcrete.

The Effect of Addition of Blast-furnace Slag Powder and Limestone powder on Shotcrete Binder with Calcium Aluminate Accelerator (고로슬래그 분말 및 석회석 분말이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, ong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.86-93
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of addition of slag powder(SP) and limestone powder(LSP) on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized composite cement as a binder for shotcrete.

Properties and Environmental Effects Estimation of Grout Using Set Accelerating Agent Made From Calcium Aluminate and Viscosity Agent (칼슘알루미네이트계 급결재와 증점제를 사용한 그라우트의 특성 및 환경영향 평가)

  • Heo, Hyung Seok;Yi, Seong Tae;Noh, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.122-129
    • /
    • 2012
  • In this study, environmental problems(i.e., pH elevation and $Cr^{6+}$ detection) occurred by using the cement grout made from CA(calcium aluminate) were evaluated using viscosity agents(MC, chelate polymer). Ordinary portland cement and blaste-furnace slag cement were used by main materials and ACC(blended mixture of calcium aluminate) were used by accelerator for hardening of grout. In addition, viscosity agents were used for preventing pH elevation and heavy metal detection from grouting materials. From the results, it was noted that when chelate polymer was used, pH elevation and $Cr^{6+}$ detection were minimized. However, other cases showed higher pH elevation and $Cr^{6+}$ detection. At test 1 day, $Cr^{6+}$ detection with age presented over 97% of total value and, after that, additional increase was not distinct. As a result of this study, it was acknowledged that, to control pH elevation and heavy-metal (like $Cr^{6+}$) detection, the usage of BSC and chelate polymer is a very useful fact.