• Title/Summary/Keyword: calcite

Search Result 624, Processing Time 0.038 seconds

A Study of the Removal Characteristics of Heavy Metal(loid)s using by Product from NoMix Toilet and its Characterization (NoMix toilet 에서 발생하는 부산물을 이용한 수용액내 (준)중금속 제거 특성 및 가능성 연구)

  • Shim, Jaehong;Lim, Jeong-Muk;Kim, Jin-Won;Kim, Hae-Won;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • Struvite (MgNH4PO4 ⋅ 6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) precipitation in urine-separating toilets (NoMix toilets) causes severe maintenance problems and also reduce the phosphate and calcium content. Application of urine separating technique and extraction of by-products from human urine is a cost effective technique in waste water treatment. In this study, we extract urine calcite from human urine by batch scale method, using urease producing microbes to trigger the precipitation and calcite formation process. Extracted urine calcite (calcining at 800℃) is a potential adsorbent for removal of heavy metal(loid)s like (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+ and As3+) along with additional leaching analysis of total nitrogen (T-N), phosphate (T-P) and chemical oxygen demand (COD). The transformations of calcite during synthesis were confirm by characterization using XRD, SEM-EDAX and FT-IR techniques. In additional, the phosphate leaching potential and adsorbate (nitrate) efficiency in aqueous solution was investigated using the calcinedurine calcite. The results indicate that the calcite was effectively remove heavy metal(loid)s lead up to 96.8%. In addition, the adsorption capacity (qe) of calcite was calculated and it was found to be 203.64 Pb, 110.96 Cd, 96.02 Zn, 104.2 As, 149.54 Cu and 162.68 Ni mg/g, respectively. Hence, we suggest that the calcite obtain from the human urine will be a suitable absorbent for heavy metal(loid)s removal from aqueous solution.

The Removal Kinetics of Mn and Co from the Contaminated Solutions by Various Calcium Carbonate Surfaces (다양한 방해석 표면에 대한 Mn과 Co 흡착 기작)

  • H., Yoon;Ko, K.S.;Kim, S.J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.219-222
    • /
    • 2004
  • Removal characteristics of Mn and Co was studied from the contaminated solutions via surface reaction with various calcium carbonate (calcite). Synthetic calcium carbonates which has different surface morphology as well as surface areas were prepared by a spontaneous precipitation method and used. Mn and Co removal behavior by the different solid surface demonstrate characteristic sorption behaviors depend on the type of calcite used, such as surface area or surface morphology. Calcium carbonate crystals (mostly calcite) which exhibit complicated surface morphology (c-type) shows strong sorption affinity for Mn and Co removal via sorption than on the a-type or b-type calcite crystals of less complicated surfaces. The applicability of two kinetic models, the pseudo-first-order kinetic equation and the Elovich kinetic model was examined on these sorption behavior. Elovich kinetic model was found more suitable to explain the very early stage adsorption kinetics, while the pseudo-first-order kinetic equation was successfully fitted for the adsorption kinetics after 50 hours.

  • PDF

Selection of Chemicals for the Dissolved Phosphorus Control by Variations of Alkalinity and Hardness (용존인 제어를 위한 알칼리도와 경도 조절제의 선택)

  • Kim, Sungok;Kim, Hag Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.206-211
    • /
    • 2014
  • This study was done to find chemicals adequate to control alkalinity and hardness in order to reduce dissolved phosphorus in water bodies like rivers and lakes. Five chemicals were selected for the study: calcite, lime, dolomite, magnesite, and gypsum. Data were obtained from the calculations with MINTEQ model as a function of dosage variations of each chemical. Findings are as follows: Three out of the five chemicals are found to be effective in reducing the dissolved phosphorus, i.e., calcite, lime, and dolomite. Calcite and dolomite are able to lower the phosphorus concentration up to one thousandth fold whereas lime does one hundred thousandths fold. In viewpoint of pH variation, both calcite and dolomite seem to be safe since the pH does not increase over 8.3 even in case of overdose. In the same circumstance, with lime the pH increases beyond 9 which is considered to be the highest pH level for the protection of water ecosystem. Nevertheless it is recommendable to use lime in case where there are some difficulties in water quality control due to algae blooms.

Phase Change of Calcium Carbonate by Adding Polymers (고분자 첨가에 의한 탄산칼슘의 상 변화)

  • Han, Hyun-Kak;Jeon, Je-Sung;Kim, Mi-Sun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.300-303
    • /
    • 2012
  • Phase change of calcium carbontae crystals in crystallization of precipitated calcium carbonate was researched by adding additives such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), citric acid (CIT) and pyromellitic amid (PMA). At low temperature $20^{\circ}C$, calcite crystal was made. At high temperature $80^{\circ}C$, aragonite crystal was made without additives. At middle temperature $40^{\circ}C$ and $60^{\circ}C$, Aragonite crystal also made by adding EDTA, DTPA. The crystal growth of Aragonite was retarded by the presence of CIT, PMA and the single phase of calcite was made. It was found that additives were important factors to make the single phase of calcium carbonate.

Nanosized Calcite in the Chinese Loess (중국 뢰스의 나노 방해석)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.255-260
    • /
    • 2007
  • The loess on the Chinese loess plateau is not only the accumulation of Asian dust but also the source materials of Hwangsa. The eolian carbonates of the loess were dissolved and reprecipitated to form secondary pedogenic carbonates by the post-depositional weathering during the interglacial time. Mineralogical analysis shows that the secondary calcites are composed mostly of a nanosized fibrous calcite with rather constant width ($30{\sim}50nm$) and highly variable length. The nano calcite is the major authigenic mineral, which occurs as the fine-grained matrix of the loess and paleosol. The nano calcite was recently reported in the Hwangsa, where it was originated from the source regions of Chinese loess plateau.

Phase Changes of Calcium Carbonate by Temperature and RPM in Continuous Crystallizer (연속식 결정화기에서 온도와 교반속도에 의한 탄산칼슘 결정의 형상변화)

  • Shin, Yuonjeong;Han, Hyunkak
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.666-671
    • /
    • 2019
  • Calcium carbonate involves three phases such as calcite, vaterite, and aragonite. Calcite and aragonite were more thermodynamically stable than vaterite. The synthesis of aragonite crystals by the reaction with sodium carbonate and calcium chloride solutions was investigated focusing on the effect of temperature and rpm in continuous crystallizer. In the batch crystallization test, calcite was synthesized by a relatively low temperature (under $40^{\circ}C$), but aragonite was formed at high temperature. In the continuous process with 100 rpm, no aragonite was found regardless of reaction temperature. But as increasing the stirring rate to 300 rpm and 500 rpm, the ratio of aragonite to calcite increased as increasing the temperature.

Assessment of the Mechanical Performance of Nano-Silica and Nano-Calcite Incorporated Limestone Calcined Clay Cement (LC3) Paste (나노실리카와 나노칼사이트 혼입 석회석 소성 점토 시멘트(LC3) 페이스트의 기계적 성능 평가)

  • Kim, Gyeong-Ryul;Cho, Seong-Min;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.151-152
    • /
    • 2023
  • This study investigates the effect of nano-silica and nano-calcite on the hydration properties and mechanical performance of limestone calcined clay cement (LC3) paste. The pastes were synthesized by replacing limestone with nano-silica and nano-calcite in order to enhance the mechanical properties in both early and late stages of hydration. The nano-calcite enhanced the strength of LC3 pastes at 1 day of hydration, however, the strength decreased compared to the ordinary LC3 pastes afterwards due to excessive amount of carboaluminate produced in the pastes. On the other hand, nano-silica improved the mechanical properties of LC3 pastes at all ages of hydration. This is mainly due to the nucleation effect and pozzolanic reaction of nano-silica, affecting the early age and late ages of hydration, respectively. The nucleation effect of both nanomaterials were confirmed by the analysis of hydration heat, supporting the enhanced early age strength of nanomaterial incorporated LC3 pastes. Furthermore, the dense matrix was shown in the pore size distribution, and the increased C-S-H due to the pozzolanic reaction evidence the improved compressive and splitting tensile strength of nano-silica incorporated LC3 pastes.

  • PDF

Low-k and High Reflectance Material as a Filler for Flat Panel Display Devices

  • Lee, Jung-Ki;Kim, Jin-Ho;Sung, Woo-Kyung;Hwang, Seong-Jin;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1580-1582
    • /
    • 2007
  • The composites were fabricated with titania used commercially and calcite as a filler in BZB glass matrix and their thermal, optical and electrical properties were investigated. From our results, calcite may be the profitable and highly efficient reflectance material as a filler for flat panel display devices.

  • PDF

X-ray Diffraction Analysis of Kumsansa Mural Painting and Dan-Chong (금산사 벽화 안료성분에 관한 비교분석)

  • Hong, Jong-Ouk;Jung Kwang-Yong
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.59-68
    • /
    • 1992
  • Some pigments of Kumsansa mural painting and Dan-Chong were analyzed by X-ray diffraction spectrometry. Red colour of mural painting and Dan-Chong are all of hematite based quartz and calcite. White blue were found to lead sulphate based calcite on mural painting. Blue pigment on mural painting was found to be quartz, albite, calcite, gypsum and talcwhile Dan-Chong lazurite and gypsum.* Dan-Chong : Exterior painrig with various colours and desingns.

  • PDF

Formation Mechanism of Aragonite by Substitute of Mg2+ Ions

  • Choi, Kyung-Sun;Park, Jin-Koo;Ahn, Ji-Whan;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.889-892
    • /
    • 2004
  • Acicular type aragonite precipitated calcium carbonate was synthesized by carbonation reaction of $Ca(OH)_2$ slurry and $CO_2$ gas. As increasing the initial concentration of $Mg^{2+}$ ion, calcite crystal phase substantially decreased while that of aragonite crystal phase increased. According to XRD and EDS analysis, it was found that the addition of $MgCl_2$ induced the $Mg^{2+}$ ion to substitute in $Ca^{2+}$ ion site of calcite lattice then the unstabled calcite structure be resolved, consequently the growth of calcite structure is interrupted while the growth of aragonite structure is expedited.