• 제목/요약/키워드: calcination temperatures

검색결과 135건 처리시간 0.025초

하소온도에 따른 Mg-페라이트 소결체의 미세구조 및 전기.자기적 특성 연구 (Microstructure, Electric, and Magnetic Properties of Mg-Ferrite with Various Calcination Temperature)

  • 김성재;정명득;백종규
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 1995
  • Effects of calcination temperature on microstructure and electric-magnetic properties of Mg-ferrite were investigated. As the calcination temperature increase, the green density and the sintered density increase due to the enhancement of densification of calcined powder. The grain size in the sintered ferrite increases with increasing the calcination temperatures from 800 to 100$0^{\circ}C$, but decreases from 1000 to 120$0^{\circ}C$. The resistivity decreases with increasing the calcination temperatures from 800 to 110$0^{\circ}C$, but increases from 1100 to 120$0^{\circ}C$ due to the microstructure which consists of small, uniform grian size and pores at grain boundaries. Magnetization increases slightly due to the increasement of the sintered density while Curie temperature is almost constant regardless of calcination temperatures.

  • PDF

ZnO 바리스터의 하소과정에서 $Sb_2O_3$의 거동 (Behavior of $Sb_2O_3$ in the Calcination Process of ZnO Varistor)

  • 최진석;마재평;백수현
    • 대한전자공학회논문지
    • /
    • 제24권3호
    • /
    • pp.433-438
    • /
    • 1987
  • The current-voltage characteristics of the ZnO varisor with and without Sb2O3 which were fabricated with the various calcination and sintering temperature were discussed by comparing the results of SEM-microstructures and X-ray diffraction analysis. The samples were calcined at the temperature up to 800\ulcorner for 2 hours and they were sintered at 1200-1300\ulcorner for 1 hour. Then, we applied the power up to dc 200 volt to the samples and measured the output current up to 100mA. The samples without Sb2O3 had lower nonlinear resistances at the all calcination and sintering temperatures due to the large grains because of not forming Spinel phase. The other samples contained Sb2O3 could form Pyrochlore and Spinel phases at the all calcination temperatures by X-ray diffraction phase analysis. We found that the Spinel phases which were formed at the calcination process inhibit growth of ZnO grain and give rise to the change of nonlinear resistances by SEM-microstructures. And we found that the base of ZnO grain growth control is strongly dependent on the behavior of Sb2O3 in calcination process.

  • PDF

WSbTi의 소성온도에 따른 VWSbTi 촉매의 NH3-SCR 효율 연구 (A Study on the NH3-SCR Activity of the VWSbTi According to the Calcination Temperature of WSbTi)

  • 어은겸;신중훈;홍성창
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.64-70
    • /
    • 2022
  • 본 연구에서는 NH3-SCR에서 VWTi촉매의 저온 탈질효율 증진을 위해 Sb을 첨가하여 실험을 수행하였으며 Sb 첨가에 있어 다양한 소성온도(400~700 ℃)에서 제조하였다. NH3-SCR 실험 결과 Sb 소성온도 500~600 ℃에 해당하는 VWSbTi(500)와 VWSbTi(600) 촉매가 300 ℃ 이하의 저온에서 가장 우수한 탈질성능을 나타냈으며, 소성온도에 따른 물리화학적 특성을 확인하고자 BET, XRD, Raman, XPS, H2-TPR, NH3-TPD 분석을 수행하였다. VWSbTi(500)와 VWSbTi(600)의 경우 W=O종의 생성에 따라 암모니아 산점이 증가하였으며 텅스텐의 전자밀도 증가에 따른 우수한 redox 특성으로 저온에서 우수한 활성을 나타내었다. 또한 VWSbTi(700)의 경우 V2O5 결정구조가 형성되어 활성이 저하됨에 따라 Sb 첨가과정에 있어 최적의 소성온도를 확인하였다.

Preparation and capacitance behaviors of cobalt oxide/graphene composites

  • Park, Suk-Eun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.130-132
    • /
    • 2012
  • In this study, cobalt oxide ($Co_3O_4$)/graphene composites were synthesized through a simple chemical method at various calcination temperatures. We controlled the crystallinity, particle size and morphology of cobalt oxide on graphene materials by changing the annealing temperatures (200, 300, $400^{\circ}C$). The nanostructured $Co_3O_4$/graphene hybrid materials were studied to measure the electrochemical performance through cyclic voltammetry. The $Co_3O_4$/graphene sample obtained at $200^{\circ}C$ showed the highest capacitance of 396 $Fg^{-1}$ at 5 $mVs^{-1}$. The morphological structures of composites were also examined by scanning electron microscopy and transmission electron microscopy (TEM). Annealing $Co_3O_4$/graphene samples in air at different temperatures significantly changed the morphology of the composites. The flower-like cobalt oxides with higher crystallinity and larger particle size were generated on graphene according to the increase of calcination temperature. A TEM analysis of the composites at $200^{\circ}C$ revealed that nanoscale $Co_3O_4$ (~7 nm) particles were deposited on the surface of the graphene. The improved electrochemical performance was attributed to a combination effect of graphene and pseudocapacitive effect of $Co_3O_4$.

Spectroscopic and Morphological Investigation of Co3O4 Microfibers Produced by Electrospinning Process

  • Baek, J.H.;Park, J.Y.;Hwang, A.R.;Kang, Y.C.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1242-1246
    • /
    • 2012
  • The Co oxide microfibers were synthesized using the electrospinning process and formed $Co_3O_4$ microfibers after being calcined at high temperatures. The calcination temperature influenced the diameters, morphology, crystalline phase, and chemical environment of the fibers. The surface morphology of the obtained fibers was examined by using the scanning electron microscope (SEM). As the calcination temperatures increased from room temperature to 873 and 1173 K, the diameters of the cobalt oxide fibers decreased from 1.79 to 0.82 and 0.32 mm, respectively. The structure of the fibers was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The calcined $Co_3O_4$ fibers had crystalline face-centered cubic (fcc) structure. The X-ray photoelectron spectroscopy (XPS) results revealed that increasing the calcination temperature promoted the formation of $Co^{2+}$ and $Co^{3+}$ species.

Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals

  • Islam G. Alhindawy;Hany Gamal;Aljawhara.H. Almuqrin;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1885-1891
    • /
    • 2023
  • The present work aims to fabricate Na1+xZr2SixP3-xO12 compound at various calcination temperatures based on the zircon mineral. The fabricated compound was calcinated at 250, 500, and 1000℃. The effect of calcination temperature on the structure, crystal phase, and radiation shielding properties was studied for the fabricated compound. The X-ray diffraction diffractometer demonstrates that, the monoclinic crystal phase appeared at a calcination temperature of 250℃ and 500℃ is totally transformed to a high-symmetry hexagonal crystal phase under a calcination temperature of 1000℃. The radiation shielding capacity was also qualified for the fabricated compounds using the Monte Carlo N-Particle transport code in the g-photons energy interval between 15keV and 122keV. The impacts of calcination temperature on the g-ray shielding behavior were clarified in the present study, where the linear attenuation coefficient was enhanced by 218% at energy of 122keV, when the calcination temperature increased from 250 to 1000℃, respectively.

TiO2 광촉매 활성에서 소성온도의 영향 (Effects of Calcination Temperature on Ti02 Photocatalytic Activities)

  • 김승민;윤태관;홍대일
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.889-896
    • /
    • 2005
  • The nanosized $TiO_2$ photocatalysts were prepared by the hydrolysis of $TiCl_4$ and calcined at different temperatures. The resulting materials were characterized by TGA, DSC, XRD, and TEM testing techniques. XRD, TEM, and BET measurements indicated that the particle size of $TiO_2$ was increased with rise of calcination temperature and surface area was decreased with rise of it. The prepared $TiO_2$ photocatalysts were used for the photocatalytic degradation of congo red. The effects of calcination temperature, $TiO_2$ loading, the initial concentration of congo red, and usage frequencies were investigated and the rate constants were determined by regressing the experimental data. Calcination is an effective treatment to increase the photo activity of nanosized $TiO_2$ photocatalysts resulting from the improvement of crystallinity. The optimum calcination temperature of the catalyst for the efficient degradation of congo red was found to be $400^{\cric}C$. The rate constant was decreased with increase in the initial concentration of congo red and increased with increase in the $TiO_2$ loading. In the case of $TiO_2$ photocatalysts, the photocatalytic activity wasn't greatly affected by the usage frequencies.

하소 온도가 $Y_2 BaCuO_5$의 소결밀도에 미치는 영향 (Effect of Calcination Temperature on Sintered Desity of $Y_2 BaCuO_5$)

  • 고재웅;이수영;김해두;정형식
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.65-70
    • /
    • 1990
  • The $Y_2 BaCuO_5$ phase was synthesized under various calcination temperatures and sintered. The $Y_2 BaCuO_5$ phase strarted to form at $850^{\circ}C$ for 6hours calcination time and, at $1000^{\circ}C$, all the X-ray diffraction peaks corresponded to $Y_2 BaCuO_5$. The sintered density of $Y_2 BaCuO_5$ was increased to 97 % of its theoretical density by the control of calcination temperature.

  • PDF

하소온도에 따른 인공치관용 스피넬-유리 복합체의 기계적 특성 (Effect of calcination temperature on mechanical properties of spinel-glass dental composites)

  • 이득용;이준강;김대준
    • 한국결정성장학회지
    • /
    • 제12권5호
    • /
    • pp.234-239
    • /
    • 2002
  • 하소온도를 $1000^{\circ}C$ ~ $1300^{\circ}C$ 로 변화시킨 스피넬 분말을 용융침투법으로 스피넬-유리 치관용 복합체를 제조하여 하소온도가 복합체에 기계적 특성에 미치는 영향을 조사하였다. 하소온도가 상관없이 분말의 평균 입도는 2.8 ~3.0 $\mu$m로 유지하다가 $1300^{\circ}C$ 에서 4.66 $\mu$m로 증가하였다. 하소온도가 증가하메 따라 전성형체의 수축률과 기공크기는 각각 감소하고 증가하였다. 따라서, 하소온도에 의한 분말의 입도 및 입도 분포가 치밀화에 지대한 영향을 미치는 것으로 추정된다. 최적의 기계적 특성을 가진 스피넬-유리 복합체의 하소온도는 $1200^{\cire}C$이었으며, 강도와 인성 값은 각각 284$\pm$40 MPa, 2.5$\pm$0.1 MPa $m^{1/2}$이었다. 투광성 실험결과, 상용 알루미나-유리 복합체보다 가시광선 영역에서 투과율이 두배이상 우수한 심미성이 관찰되었다.

Synthesis and Characterization of Ruthenium Doped TiO2 Nanofibers

  • Park, Jung-Yeon;Lee, Deuk-Yong;Cho, Nam-Ihn;Oh, Young-Jei
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.82-89
    • /
    • 2011
  • Ruthenium(Ru)-doped $TiO_2$ nanofibers were prepared using electrospun Ru-$TiO_2$/poly(vinyl acetate) (PVAc) fibers and subsequent annealing for 1 h at temperatures in the range of $500^{\circ}C$ to $1000^{\circ}C$ in air. The properties of the Ru-$TiO_2$ fibers were characterized as a function of the Ru content and calcination temperature using X-ray diffraction, thermal gravimetry with differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and viscometer, pycnometer and dynamic tensiometer measurements. Although the diameter of the fiber decreased slightly with increasing calcination temperature, no dramatic changes were observed with respect to the ruthenium content. The XRD and FT-IR results revealed that anatase phase and ruthenium metal began to be formed after calcination at temperatures above $500^{\circ}C$. Anatase and rutile phases and ruthenium metal coexisted in the fibers calcined above $600^{\circ}C$. No anatase phase was detected in the fibers containing ruthenium when they were calcined at $1000^{\circ}C$. The morphology of the fibers changed from smooth and uniform to porous with increasing temperature. The experimental results suggest that the calcination temperature and Ru content were influential in determining the morphology and structure of the fibers.