Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.4.1242

Spectroscopic and Morphological Investigation of Co3O4 Microfibers Produced by Electrospinning Process  

Baek, J.H. (Department of Chemistry, Pukyong National University)
Park, J.Y. (Department of Chemistry, Pukyong National University)
Hwang, A.R. (Department of Chemistry, Pukyong National University)
Kang, Y.C. (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
The Co oxide microfibers were synthesized using the electrospinning process and formed $Co_3O_4$ microfibers after being calcined at high temperatures. The calcination temperature influenced the diameters, morphology, crystalline phase, and chemical environment of the fibers. The surface morphology of the obtained fibers was examined by using the scanning electron microscope (SEM). As the calcination temperatures increased from room temperature to 873 and 1173 K, the diameters of the cobalt oxide fibers decreased from 1.79 to 0.82 and 0.32 mm, respectively. The structure of the fibers was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The calcined $Co_3O_4$ fibers had crystalline face-centered cubic (fcc) structure. The X-ray photoelectron spectroscopy (XPS) results revealed that increasing the calcination temperature promoted the formation of $Co^{2+}$ and $Co^{3+}$ species.
Keywords
Co oxide microfibers; XPS; Electrospinning; XRD;
Citations & Related Records
연도 인용수 순위
1 Hwang, A. R.; Park, J.; Kang, Y. C. Bull. Korean Chem. Soc. 2011, 32, 3338.   DOI
2 Zhiyao, H.; Chunxia, L.; Jun, Y.; Hongzhou, L.; Piaoping, Y.; Ruitao, C.; Ziyong, C.; Jun, L. J. Mater. Chem. 2009, 19, 2737.   DOI   ScienceOn
3 JCPDS Database, International Center for Diffraction Data 1997, PDF 73-1969.
4 Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials; Wiley: New York, 1954; pp 491-538.
5 Wang, Y.; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J. Nano Res. 2011, 4, 695.   DOI   ScienceOn
6 Jiang, P.; Zhou, J. J.; Li, R.; Wang, Z. L.; Xie, S. S. Ins. Phy. Pub. Nano. 2006, 17, 3533.
7 Xu, X. L.; Chen, Z. H.; Li, Y.; Chen, W. K.; Li, J. Q. Sur. Sci. 2009, 603, 653.   DOI   ScienceOn
8 Helena, A. E.; Hagelin-W.; Gar, B. H.; David, M. M.; Ghaleb, N. S. Appl. Surf. Sci. 2004, 235, 420.   DOI   ScienceOn
9 Petitto, S. C.; Langell, M. A. J. Vac. Sci. Technol. 2004, A22, 4.
10 Altavilla, A.; Ciliverto, E. Appl. Phys. A 2004, 79, 309.   DOI   ScienceOn
11 Logothesis, E. M.; Park, K.; Meitzler, A. H.; Laud, K. R. Appl. Phys. Lett. 1975, 26, 209.   DOI
12 Chun, M. S.; Moon, M. J.; Park, J.; Kang, Y. C. Bull. Korean Chem. Soc. 2009, 30, 2729.   DOI
13 Szegedi, A.; Popova, M.; Mavrodinova, V.; Minchev, C. Appl. Catal. A 2008, 338, 44.   DOI
14 Kim, H.; Park, D. W.; Woo, H. C.; Chung, J. S. Appl. Catal. B 1998, 19, 233.   DOI
15 Hu, C. C.; Cheng, C. Y. Electrochem. Solid-State Lett. 2002, 5, A43.   DOI   ScienceOn
16 Hosono, E.; Fujihara, S.; Honma, I.; Ichihara, M.; Zhou, H. J. Power Sources 2006, 158, 779.   DOI   ScienceOn
17 Wang, H.; Jang, Y. I.; Huang, B.; Sadoway, D. R.; Chiang, Y. M. J. Electrochem. Soc. 1999, 146, 473.   DOI   ScienceOn
18 Liu, Y.; Mi, C.; Su, L.; Zhang, X. Electrochim. Acta 2008, 53, 2507.   DOI   ScienceOn
19 Monk, P. M. S.; Ayub, S. Solid State Ionics 1997, 99, 115.   DOI
20 Schumacher, L. C.; Holzhueter, I.; Hill, I. R.; Dignam, M. J. Electrochim. Acta 1990, 35, 975.   DOI   ScienceOn
21 Hu, C. C.; Chen, C. A. J. Chin. Inst. Chem. Eng. 1999, 30, 431.
22 Casella, I. G.; Gatta, M. J. Electroanal. Chem. 2002, 534, 31.   DOI   ScienceOn
23 Salah A.; Makhlouf J. Magn. Magn. Mater. 2002, 246, 184.   DOI   ScienceOn
24 Schumacher, L. C.; Hill, I. R.; Dignam, M. J. Electrochim. Acta 1990, 35, 975.   DOI   ScienceOn
25 Spinolo, G.; Ardizzone, S.; Trasatti, S. J. Electroanal. Chem. 1997, 423, 49.   DOI
26 Casella.; Innocenzo, G. J. Electroanal. Chem. 2002, 520, 119.   DOI
27 Shao, C. L.; Kim, H. Y.; Gong, J.; Lee, D. R. Nanotechnology 2002, 13(5), 635.   DOI   ScienceOn
28 Hu, J. Q.; Ma, X. L.; Shang, N. G. J. Phys. Chem. B 2002, 106, 3823.   DOI
29 Ramaseshan, R.; Sundarrajan, S.; Jose, R.; Ramakrishna, S. J. Appl. Phys. 2007, 102, 111101.   DOI   ScienceOn
30 Dan, Li.; Younan, X. Adv. Mater. 2004, 16, 1151.   DOI   ScienceOn
31 Xia, Y.; Yang, P.; Sun, Y. Adv. Mater. 2003, 15, 353.   DOI   ScienceOn
32 Yu, D.; Ying, W.; Liang, S.; Michael, B.; Heng Z.; Yu, L. Biosen. Bioelec. 2010, 26, 542.   DOI   ScienceOn
33 Luo, S.; Fan, J.; Liu, W. Nanotechnology 2006, 17, 1695.   DOI   ScienceOn
34 Chaudhari, G. N.; Bambole, D. R.; Bodade, A. B. J. Mater. Sci. 2006, 41, 4860.   DOI   ScienceOn
35 Chen, C. L.; Weng, H. S. Appl. Catal. B 2005, 55, 115.   DOI   ScienceOn
36 Noguchi, S.; Mizuhashi, M. Thin Solid Films 1981, 77, 99.   DOI
37 Jo, J. M.; Park, J.; Kim, D.; Koh, S. W.; Kang, Y. C. Bull. Korean Chem. Soc. 2010, 31, 1776.   DOI
38 Yu, Z. G.; Yang, B. C. Mater. Lett. 2008, 62, 211.   DOI   ScienceOn
39 Hongyu, G.; Changlu, S.; Shangbin, W.; Bin, C.; Jian, G.; Xinghua, Y. Mater. Chem. Phys. 2003, 82, 1002.   DOI   ScienceOn